
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2016

Structure Discovery in Bayesian Networks:
Algorithms and Applications
Yetian Chen
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Artificial Intelligence and Robotics Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Chen, Yetian, "Structure Discovery in Bayesian Networks: Algorithms and Applications" (2016). Graduate Theses and Dissertations.
15678.
https://lib.dr.iastate.edu/etd/15678

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F15678&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F15678&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F15678&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F15678&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F15678&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F15678&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=lib.dr.iastate.edu%2Fetd%2F15678&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/15678?utm_source=lib.dr.iastate.edu%2Fetd%2F15678&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Structure discovery in Bayesian networks: Algorithms and applications

by

Yetian Chen

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Science

Program of Study Committee:

Jin Tian, Major Professor

Kris De Brabanter

David Fernández-Baca

Yan-Bin Jia

Daniel S. Nettleton

Iowa State University

Ames, Iowa

2016

Copyright c© Yetian Chen, 2016. All rights reserved.

www.manaraa.com

ii

DEDICATION

I would like to dedicate this thesis to my parents without whose support I would not have

been able to complete this work.

www.manaraa.com

iii

TABLE OF CONTENTS

LIST OF TABLES . viii

LIST OF FIGURES . ix

ACKNOWLEDGEMENTS . xii

ABSTRACT . xiv

CHAPTER 1. INTRODUCTION . 1

1.1 Preliminaries and Problem Definition . 3

1.1.1 Bayesian Networks . 3

1.1.2 Structure Learning of Bayesian Networks 6

1.1.3 Structure Discovery in Bayesian Networks 8

1.2 Related Work . 9

1.2.1 Bayesian Network Structure Learning 9

1.2.2 Structure Discovery in Bayesian Networks 12

1.2.3 Scaling Up Bayesian Network Structure Learning 14

1.2.4 Parallel Algorithms for Structure Learning and Discovery 15

1.3 Thesis Overview . 16

CHAPTER 2. CURRICULUM LEARNING OF BAYESIAN NETWORK

STRUCTURES . 18

2.1 Introduction . 18

2.2 Curriculum Learning . 19

2.3 Curriculum Learning of Bayesian Network Structures 20

2.3.1 Scoring Function . 21

2.3.2 Curriculum . 22

www.manaraa.com

iv

2.3.3 Algorithm . 25

2.4 Theoretical Analysis . 26

2.4.1 Analysis Based on Distance between Structures 26

2.4.2 Analysis Based on Distance between Distributions 27

2.5 Experiments . 29

2.5.1 Experiments on Bayesian Network Reconstruction 29

2.5.1.1 Experimental Setup . 30

2.5.1.2 Evaluation Metrics . 30

2.5.1.3 Results . 31

2.5.1.4 Analysis of Step Size . 34

2.5.1.5 Theory Verification . 34

2.5.2 Experiments on Classification . 35

2.5.2.1 Experimental Setup . 36

2.5.2.2 Results . 38

2.6 Discussion . 38

2.7 Conclusion . 39

CHAPTER 3. FINDING THE K-BEST EQUIVALENCE CLASSES FOR

MODEL AVERAGING . 40

3.1 Preliminaries . 40

3.2 Finding the k-best Equivalence Classes of Bayesian Networks 42

3.2.1 Algorithm . 42

3.2.2 Characterization of Time and Space Complexity 45

3.3 Bayesian Model Averaging Using the k-best Equivalence Classes 47

3.4 Experiments . 48

3.4.1 kBestEC v.s. kBestDAG . 49

3.4.2 Structure Discovery . 52

3.5 Discussion . 53

3.6 Conclusion . 55

www.manaraa.com

v

CHAPTER 4. PARALLEL EXACT BAYESIAN EDGE LEARNING 56

4.1 Introduction . 56

4.2 Exact Bayesian Structure Discovery in Bayesian Networks 59

4.2.1 Computing Posteriors of Structural Features 59

4.2.2 Computing Posterior Probabilities for All Edges 61

4.3 Parallel Algorithm . 63

4.3.1 n-D Hypercube Algorithm . 64

4.3.1.1 Computing F (S) and R(S) . 64

4.3.1.2 Parallel Fast Zeta Transforms 66

4.3.1.3 Computing P (u→ v|D) . 71

4.3.2 k-D Hypercube Algorithm . 72

4.3.2.1 Parallel Fast Zeta Transforms on k-D hypercube 73

4.3.2.2 Computing F (S) and R(S) on k-D Hypercube 78

4.3.2.3 Overall Algorithm: ParaREBEL 79

4.3.2.4 Time and Space Complexity 80

4.4 Experiments . 81

4.4.1 Implementation and Computing Environment 81

4.4.2 Running Time and Memory Usage . 82

4.4.3 Knowledge Discovery . 86

4.5 Discussion and Conclusion . 88

CHAPTER 5. EXACT BAYESIAN LEARNING OF ANCESTOR RELA-

TIONS . 90

5.1 Introduction . 90

5.2 Preliminaries . 91

5.3 Previous Approaches . 92

5.4 Bayesian Learning of Ancestor Relations . 93

5.4.1 Algorithm . 93

5.4.2 Efficient Computation of As(S, T,W) 98

5.4.3 Overall Algorithm to Compute P (s t|D) 99

www.manaraa.com

vi

5.4.4 Time and Space Complexity . 100

5.4.5 Exact Bayesian Learning of s p t Relations 101

5.5 Experiments . 102

5.5.1 Running Times . 102

5.5.2 Comparison of Posteriors . 102

5.5.3 Knowledge Discovery . 104

5.6 Conclusion . 106

CHAPTER 6. JOINT DISCOVERY OF SKILL PREREQUISITE GRAPHS

AND STUDENT MODELS . 107

6.1 Introduction . 107

6.2 Relation to Prior Work . 108

6.3 The COMMAND Algorithm . 109

6.3.1 Initial Bayesian Network . 112

6.3.2 Structural EM . 112

6.3.3 Discriminate Between Equivalent Bayesian Networks 114

6.3.3.1 Domain Knowledge . 114

6.3.3.2 Theoretical Justification of Heuristic 115

6.3.3.3 Orient All Reversible Edges . 116

6.4 Evaluation . 117

6.4.1 Simulated Data . 117

6.4.1.1 Single-skill vs Multi-skill Items 119

6.4.1.2 Sensitivity to Noise . 120

6.4.1.3 Sensitivity to Missing Values 121

6.4.1.4 Comparison With Prior Work 123

6.4.2 Real Student Performance Data . 124

6.4.2.1 English Data Set . 124

6.4.2.2 Math Data Set . 125

6.5 Conclusion and Discussion . 128

www.manaraa.com

vii

CHAPTER 7. SUMMARY, CONTRIBUTIONS AND FUTURE WORK . . 130

7.1 Summary and Contributions . 130

7.2 Future Work . 132

APPENDIX A. SUPPLEMENTAL MATERIAL FOR FINDING THE K-

BEST EQUIVALENCE CLASSES FOR MODEL AVERAGING 135

A.1 Proofs of Theorems . 135

A.2 Algorithms . 136

APPENDIX B. COMPUTING THE POSTERIORS of s p t RELATIONS 138

B.1 Algorithm . 138

B.2 Time and Space Complexity . 143

BIBLIOGRAPHY . 145

www.manaraa.com

viii

LIST OF TABLES

Table 2.1 Bayesian networks used in experiments. 30

Table 2.2 Comparison between CL and MMHC on four metrics 32

Table 2.3 Frequency of the winning step size . 34

Table 2.4 Datasets used in classification experiments. 37

Table 2.5 Classification results on two metrics . 38

Table 3.1 Performance comparison between kBestEC and kBestDAG 51

Table 4.1 Run-time for the test data with n = 25 with varying bounded in-degree d. 83

Table 4.2 Run-time for the test data sets with n = 21, 23, 25, 27, 29, 31, 33 with

fixed d = 4. 84

Table 4.3 Memory usage for the test data with n = 23, 25, 27, 29, 31, 33 with fixed

d = 4. 85

Table 5.1 Execution time (in seconds) . 102

Table 5.2 Ancestor relations learned for CYTO data set 104

Table 6.1 Example student performance matrix to use with COMMAND. 111

Table 6.2 Formulas for measuring adjacency rate (AR) 119

Table 6.3 Formulas for measuring orientation rate (OR) 119

www.manaraa.com

ix

LIST OF FIGURES

Figure 1.1 An example of Bayesian network with four variables. 2

Figure 1.2 An illustrative example of d-separation. 4

Figure 1.3 An equivalence class containing three DAGs (a, b, c) and its CPDAG (d). 5

Figure 2.1 An illustrative example of curriculum learning of a Bayesian network

structure. 19

Figure 2.2 Comparison of the average SHD on the Andes, Hailfinder, Hepar2 and

between CL and MMHC . 33

Figure 2.3 Changes of SHD from the target Bayesian network during curriculum

learning with SS = 5000 on the Alarm and Hailfinder networks. 35

Figure 3.1 An illustrative example of the DP algorithm operating on a four-variable

problem ({X1, X2, X3, X4}). 44

Figure 3.2 Finding the k-best ECs (k = 2) over {X1, X2, X3, X4} by DP. 46

Figure 3.3 Comparison of kbestEC andkbestDAG on execution times. 50

Figure 3.4 Comparison of ROC curves for edge discovery. 53

Figure 3.5 Structure discovery results on Tic data set. 54

Figure 4.1 A lattice for a domain of size 3. 65

Figure 4.2 Map the computation of function R(S) to the n-D hypercube. 65

Figure 4.3 An illustrative example of parallel truncated upward zeta transform on

n-D hypercube. 68

Figure 4.4 An illustrative example of parallel truncated downward zeta transform

on n-D hypercube. 69

www.manaraa.com

x

Figure 4.5 Retrieve R for computing Γv. 71

Figure 4.6 Decompose a 3-D lattice into two 2-D lattices which are then mapped

to an 2-D hypercube. 72

Figure 4.7 An illustrative example of parallel truncated upward zeta transform on

k-D hypercube. 76

Figure 4.8 An illustrative example of parallel truncated downward zeta transform

on k-D hypercube. 77

Figure 4.9 Pipelining execution of hypercubes to compute F (S) and R(S). 79

Figure 4.10 Speedup and efficiency for the test data set with n = 25 with varying

bounded in-degree d. 83

Figure 4.11 Speedup and efficiency for the test data sets with n = 21, 23, 25. 84

Figure 4.12 Network model learned for the yeast pheromone response pathways data

set. 87

Figure 5.1 Two Markov equivalent DAGs . 93

Figure 5.2 A partition of Gs t by s’s descendant set T 94

Figure 5.3 Case 1: T = {s}. 95

Figure 5.4 Two sub-cases when computing Fs(S, T,W). 97

Figure 5.5 Scatter plots that compare posteriors of ancestor relations computed by

our algorithm and by order-based algorithm. 103

Figure 5.6 Classical model of the CYTO data set. 104

Figure 6.1 A hypothetical Bayesian network. 110

Figure 6.2 An illustration of the Structure EM algorithm to discover the structure

of the latent variables. 113

Figure 6.3 Three equivalent Bayesian networks representing different prerequisite

structures. 114

Figure 6.4 Contour plots of log(ratio) against P (S1 = 0) and P (S2 = 1|S1 = 1) for

various values of P (S2 = 0|S1 = 0). 116

Figure 6.5 Three different DAGs between latent skill variables. 117

www.manaraa.com

xi

Figure 6.6 Comparison of F1 scores for adjacency discovery and for edge orientation.120

Figure 6.7 Evaluation of COMMAND with noisy data. 121

Figure 6.8 Results of adding systematic noise. 122

Figure 6.9 Results of learning with missing data. 122

Figure 6.10 Comparison of COMMAND and PARM for discovering prerequisite re-

lationships. 123

Figure 6.11 The estimated DAG and CPTs of the ECPE data set. 124

Figure 6.12 Prerequisite structures constructed by COMMAND for Math data sets. 126

Figure 6.13 Ten fold cross-validation results of evaluating the predictions of student

performance. 128

Figure B.1 Case 1: T = {p}. 139

Figure B.2 Three sub-cases when computing Fs,p(S,R, T,W). 140

www.manaraa.com

xii

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my gratitude to many people without whose

support and help I would not have been able to complete this dissertation.

First and foremost, I would like to thank my advisor, Dr. Jin Tian for his guidance and

support throughout the years of my PhD studies. I want to thank him for giving me the

freedom to choose the research topics that I am most interested in while keeping me going in

the right direction, and for the guidance on developing my research methodology and career.

His insights, patience and focus have been unparalleled and have inspired me to contribute all

that I have to the pursuit of knowledge. I am also greatly thankful to my committee members,

Drs. Kris De Brabanter, David Fernández-Baca, Yan-Bin Jia and Daniel S. Nettleton for all

their support and advice.

I would like to thank Dr. Kewei Tu and Yanpeng Zhao at Shanghai Tech University for

the discussions and collaborations in the research of curriculum learning of Bayesian networks.

Thanks to Dr. Srinivas Aluru at Georgia Tech and Dr. Olga Nikolova for their work, discussions

and collaborations in the research of parallel algorithms for learning graphical models. I would

also like to thank Ru He for his thesis work and discussions that partly motivated my current

research.

I would like to thank my colleagues during my research internship at Pearson Research &

Innovation Network, especially José P. González-Brenes, John Behrens, Johann Ari Larusson,

Tom McTavish, Ilya Goldin, J.D. Corbin and Tasmin K. Dhaliwal for their research and dis-

cussions with me that motivated my work of using Bayesian networks for student modeling. A

special thank to José P. González-Brenes for introducing me to the field of educational data

mining and personalized learning.

I would like to thank all my friends that I made before and during my stay at Ames. I would

especially thank Feng Guo, Yueran Yang, Yang Peng, Xiang Huang, Qiuyan Liao, Chuan Jiang,

www.manaraa.com

xiii

Wangyujue Hong, Sen Wang, Wei Zhang and Lisen Peng for their tremendous help, support

and friendship. Without them, Ames wouldn’t be such a lovely place to me.

Finally, my deepest thanks to my parents and my girlfriend Yu Liu for their unconditional

love and support: thank you for understanding and supporting my choice of pursuing PhD

abroad, and for tolerating my staying in school for so long: I am graduating at last :)

www.manaraa.com

xiv

ABSTRACT

Bayesian networks are a class of probabilistic graphical models that have been widely used

in various tasks for probabilistic inference and causal modeling. A Bayesian network provides

a compact, flexible, and interpretable representation of a joint probability distribution. When

the network structure is unknown but there are observational data at hand, one can try to

learn the network structure from the data. This is called structure discovery.

Structure discovery in Bayesian networks is a host of several interesting problem variants.

In the optimal Bayesian network learning problem (we call this structure learning), one aims

to find a Bayesian network that best explains the data and then utilizes this optimal Bayesian

network for predictions or inferences. In others, we are interested in finding the local structural

features that are highly probable (we call this structure discovery). Both structure learning

and structure discovery are considered very hard because existing approaches to these problems

require highly intensive computations.

In this dissertation, we develop algorithms to achieve more accurate, efficient and scalable

structure discovery in Bayesian networks and demonstrate these algorithms in applications

of systems biology and educational data mining. Specifically, this study is conducted in five

directions.

First of all, we propose a novel heuristic algorithm for Bayesian network structure learning

that takes advantage of the idea of curriculum learning and learns Bayesian network structures

by stages. We prove theoretical advantages of our algorithm and also empirically show that it

outperforms the state-of-the-art heuristic approach in learning Bayesian network structures.

Secondly, we develop an algorithm to efficiently enumerate the k-best equivalence classes of

Bayesian networks where Bayesian networks in the same equivalence class are equally expressive

in terms of representing probability distributions. We demonstrate our algorithm in the task

of Bayesian model averaging. Our approach goes beyond the maximum-a-posteriori (MAP)

www.manaraa.com

xv

model by listing the most likely network structures and their relative likelihood and therefore

has important applications in causal structure discovery.

Thirdly, we study how parallelism can be used to tackle the exponential time and space

complexity in the exact Bayesian structure discovery. We consider the problem of computing

the exact posterior probabilities of modular structural features, e.g., directed edges, in Bayesian

networks. We present a parallel algorithm capable of computing the exact posterior proba-

bilities of all possible directed edges with optimal parallel space efficiency and nearly optimal

parallel time efficiency. We apply our algorithm to a biological data set for discovering the

yeast pheromone response pathways.

Fourthly, we develop novel algorithms for computing the exact posterior probabilities of

ancestor relations (non-modular features) in Bayesian networks. Existing algorithm assumes

an order-modular prior over Bayesian networks that does not respect Markov equivalence. Our

algorithm allows uniform prior and respects the Markov equivalence. We apply our algorithm

to a biological data set for discovering protein signaling pathways.

Finally, we introduce Combined student Modeling and prerequisite Discovery (COMMAND),

a novel algorithm for jointly inferring a prerequisite graph and a student model from student

performance data. COMMAND learns the skill prerequisite relations as a Bayesian network,

which is capable of modeling the global prerequisite structure and capturing the conditional

independence between skills. Our experiments on simulations and real student data suggest

that COMMAND is better than prior methods in the literature. COMMAND is useful for

designing intelligent tutoring systems that assess student knowledge or that offer remediation

interventions to students.

www.manaraa.com

1

CHAPTER 1. INTRODUCTION

Probabilistic graphical models (PGMs) use a graph-based representation to compactly en-

code a joint distribution by making conditional independence (CI) assumptions. In particular,

the nodes in the graph represent random variables, and the (lack of) edges represent CI as-

sumptions. There are several types of graphical model, depending on whether the graph is

composed of directed, undirected, or some combination of directed and undirected edges. In

this dissertation, we mainly focus on directed graphical models, i.e., Bayesian networks.

A Bayesian network is a directed acyclic graph (DAG) where each node and its parents

are associated with a conditional probability distribution (CPD). A CPD quantifies the effect

of the parents on the node. Figure 1.1 provides an example of Bayesian network that models

the probability dependence among four binary random variables: Cloudy, Sprinkler, Rain and

WetGrass. These models are also called belief networks, or sometimes, causal networks, because

the directed edges are sometimes interpreted as causal relations. For example, in Figure 1.1, the

directed edge between Rain and WetGrass can be interpreted as that raining could cause wet

grass. Bayesian networks have been widely used in various tasks for probabilistic inference and

causal modeling (Pearl, 2000; Spirtes et al., 2000). The DAG structure and the associated CPDs

of a Bayesian network can be constructed manually using the domain knowledge. However, in

many applications, we lack enough domain knowledge and have to learn the structure as well

as the CPDs from the data.

Learning a Bayesian network is often conducted in two phases. First, one learns the DAG

structure. In the second phase, one estimates the parameters of the conditional distributions

given the fixed structure. Parameter estimation in the second phase is considered a well-studied

problem. The learning of the DAG structure, or in other words, structure learning, is more

challenging.

www.manaraa.com

2

Figure 1.1: An example of Bayesian network with four variables.

Structure discovery in Bayesian networks is a host of several interesting problem variants.

In the optimal Bayesian network learning problem (we will call it structure learning), one aims

to find a Bayesian network that best explains the data and then uses this optimal Bayesian

network for predictions or inferences. This problem is also called model selection in relevant

literature.

In another problem variant, we are interested in finding the highly probable local structural

features (we will call this structure discovery) instead of identifying the overall structure of

the Bayesian network. For example, a directed edge in a Bayesian network represents direct

causal relation between two variables; a directed path, composed of consecutively directed

edges, represents (indirect) causal relation between two variables; a Markov blanket (MB) of a

variable, composed of its parents, children and spouses (children’s parents), shielding the node

from the rest of the network, is the only knowledge needed to predict the behavior of that

variable (Pearl, 1988). Learning these structural features from data is of great interest.

Both structure learning and structure discovery are considered very challenging because

existing approaches to these problems require highly intensive computations as well as large

memory usages. In this thesis, we aim to develop algorithms to achieve more accurate, efficient

and scalable structure learning and structure discovery in Bayesian networks.

www.manaraa.com

3

1.1 Preliminaries and Problem Definition

In this section, we present some preliminaries of Bayesian networks and provide the problem

definition for structure learning and structure discovery in Bayesian networks.

1.1.1 Bayesian Networks

A Bayesian network is a pair B = (G,P), where G is a DAG that encodes a joint probability

distribution P over a vector of random variables X = (X1, ..., Xn) with each node of the

graph representing a variable in X. In this dissertation, we will use random variable and node

interchangeably. For convenience we typically work on the index set V = {1, ..., n} and represent

a variable Xi by its index i. The DAG can be represented as a vector G = (Pa1, ..., Pan) where

each Pai is a subset of V \ {i} and specifies the parents of Xi in the graph. Each node and its

parents in the DAG is associated with a conditional probability distribution (CPD) P (Xi|Pai).

Then the joint distribution P (X) must be factorized as follows:

P (X) =
n∏
i=1

P (Xi|Pai). (1.1)

Equation 1.1 is called the chain rule of Bayesian network.

Definition 1.1 (Conditional Independence (CI)). Let X, Y and Z be three disjoint sets of ran-

dom variables. We say that X is conditionally independent of Y given Z, denoted by I(X,Z,Y),

if for any values x,y, z of X,Y,Z where P (Z = z) > 0,

P (X = x,Y = y|Z = z) = P (X = x|Z = z)P (Y = y|Z = z).

A DAG G encodes a set of conditional independence (CI) relations over the variable set

X. These CI relations can be determined using a graphical criterion called d-separation (Pearl,

1988), which is defined on the basis of blocked paths.

A path between two nodes Xi and Xj in a DAG G consists of a sequence of consecutive

edges (ignoring the direction). A node Xi is said to be an ancestor of a node Xj if there is

a directed path Xi → · · · → Xj . Xj is called a descendant of Xi. A non-endpoint node Y

on a path is called a collider if two arrowheads on the path meet at Y , i.e.,→ Y ←; all other

non-endpoint nodes on a path are non-colliders, i.e., ← Y →, ← Y ← and → Y →.

www.manaraa.com

4

Definition 1.2 (d-separation). (Pearl, 1988) A path between nodes Xi and Xj in a DAG G is

said to be d-separated (or blocked) by a set of nodes Z if and only if

1. there is a non-collider on the path in Z, or

2. there is a collider not in Z and none of this collider’s descendants is in Z.

Xi and Xj are said to be d-separated given Z, denoted by dsepG(Xi,Z, Xj), if every path between

Xi and Xj is d-separated or blockd by Z.

The concept of d-separation is illustrated in Figure 1.2. In this example, dsepG(X1, {X4, X5}, X7)

holds because {X4, X5} blocks the only path between X1 and X7 and neither X4 nor X5 is a

collider. However, neither dsepG(X1, {X2}, X7) nor dsepG(X1, {X6}, X7) holds because both

X2 and X6 are colliders.

D-separation can be generalized for sets of nodes, that is, sets X and Y are said to be

d-separated given Z, denoted by dsepG(X,Z,Y), if for every pair Xi, Yj , with Xi ∈ X, Yj ∈ Y,

Xi and Yj are d-separated given Z.

Figure 1.2: An illustrative example of d-separation.

The set of all the conditional independence (CI) relations encoded by a DAG G is specified

by the following global Markov property.

Definition 1.3 (The Global Markov Property (GMP)). A probability distribution P is said to

satisfy the global Markov property for G if for any disjoint sets X 6= ∅, Y 6= ∅, Z,

dsepG(X,Z,Y) =⇒ I(X,Z,Y).

We define I(G) = {I(X,Z,Y) : dsepG(X,Z,Y)}, i.e., the set of all CIs implied by the global

Markov property of a DAG G.

www.manaraa.com

5

(a) (b) (c) (d)

Figure 1.3: An equivalence class containing three DAGs (a, b, c) and its CPDAG (d).

The Global Markov Property says for a Bayesian network B = (G,P), every d-separation

in the DAG G implies a CI relation that must hold in P .

Definition 1.4 (I-equivalence). (Verma and Pearl, 1990) Two DAG G1 and G2 over the same

set of variables X are I-equivalent if I(G1) = I(G2), i.e., they represent the same set of CI

relations. The set of all DAGs over X are partitioned by the I-equivalence relationship into a

set of mutually exclusive and exhaustive equivalence classes (ECs).

Two I-equivalent DAGs are statistically indistinguishable. That is, given observational

data, it is impossible to identify a unique data-generating DAG unless there is only one DAG

in the corresponding equivalence class. This property has substantial impact on both structure

learning and structure discovery.

Equivalent DAGs have some common structural features. DAGs in the same equivalence

class (EC) have the same skeleton and the same v-structures1 (Verma and Pearl, 1990). Thus,

we can represent an EC using a complete partially DAG (CPDAG) which consist of a directed

edge for every irreversible edge and an undirected edge for every reversible edge.2 Figure 1.3

shows an example equivalence class containing three DAGs and the corresponding CPDAG

(Figure 1.3d).

Definition 1.5 (Independencies in P). Let P be a distribution over X. We define I(P) to be

the set of all independence assertions of the form I(X,Z,Y) that hold in P .

Definition 1.6 (Perfect Map). We say a DAG G is a perfect map (P-map) for a distribution

P if I(G) = I(P).

1A v-structure in a DAG G is an ordered triple of nodes (u, v, w) such that G contains the directed edges
u→ v and w → v and u and w are not adjacent in G.

2A CPDAG is also called a pattern. Each equivalence class has a unique CPDAG.

www.manaraa.com

6

A Bayesian network B = (G,P) where G is a perfect map of P is called a faithful Bayesian

network (Spirtes et al., 2000). Not every distribution has a perfect map. However, these

distributions are “rare” (Meek, 1995). In the problem of Bayesian network structure learning,

we will assume the distribution P has a P-map (may not be unique) and our goal is to find a

perfect map for P .

1.1.2 Structure Learning of Bayesian Networks

In the problem of Bayesian network structure learning, one aims to find a Bayesian network

that best explains the observed data. More formally, we assume that the data D are generated

i.i.d from an underlying distribution P ∗(X) which is induced by some Bayesian network B∗ =

(G∗, P ∗). Our goal is to find a (the) perfect map G∗ for P ∗. Due to the so called I-equivalence,

the best we can hope for is to recover G∗’s equivalence class. That is, we target any G that is

I-equivalent to G∗.

In general, there are two main approaches for learning Bayesian networks from data. The

first one is constraint-based (Spirtes et al., 2000). Algorithms following this approach estimate

from the data whether certain conditional independencies (CIs) between the variables hold.

The CI constraints are propagated throughout the graph and the DAGs that are inconsistent

with them are eliminated from further consideration. A sound strategy for performing CI tests

ultimately retains (and returns) only the I-equivalent DAGs consistent with the tests.

The other approach is score-based search that converts the learning problem to an opti-

mization problem. Algorithms following this approach attempt to optimize a scoring function

that measures how well a DAG fits the data (Cooper and Herskovits, 1992; Heckerman et al.,

1995). In this dissertation, we focus on the score-based search algorithms.

The first component of the score-and-search method is a scoring criterion measuring the

fitness of a DAG G to the data D. Several commonly used scoring functions are MDL, AIC,

BIC and Bayesian score. In this work, we use Bayesian score, defined as follows:

score(G : D) = logP (D|G) + logP (G), (1.2)

where P (D|G) is the likelihood of the data given the DAG G and P (G) is the prior over the

www.manaraa.com

7

DAG structures. Assuming global and local parameter independence, parameter modularity,

and uniform structure prior P (G), the score is decomposable (Heckerman et al., 1995):

score(G : D) =

n∑
i=1

scorei(Pai : D), (1.3)

where scorei(Pai : D) is called the local score or family score measuring how well a set of

variables Pai serves as parents of Xi. It is desirable that for any two I-equivalent DAGs G1

and G2, score(G1 : D) = score(G2 : D). This is called score equivalence. The commonly

used scoring functions such as MDL, AIC, BIC and BDe all satisfy score decomposability and

equivalence.

In this work, we assume discrete random variables that follow a Dirichlet-Multinomial

distribution. That is, each variable Xi follows a multinomial distribution with parameter

vector Θi,Pai conditioning on its parents, and the parameter vector Θi,Pai follows a Dirichlet

distribution with hyperparameter vector αi,Pai as the prior. In this thesis we use the following

BDeu score with αi,Pai = N ′/riqi (Buntine, 1991):

scorei(Pai : D) =

qi∑
j=1

[
ln

(
Γ(N

′

qi
)

Γ(Nij + N ′

qi
)

)
+

ri∑
k=1

ln

(
Γ(Nijk + N ′

riqi
)

Γ(N
′

riqi
)

)]
, (1.4)

where ri is the number of possible states of variable Xi; qi is the number of possible con-

figurations of the parent set Pai of Xi; Nijk is the number of instances in data D where the

variable Xi takes its k-th value xik and the variables in Pai take their j-th configuration;

Nij =
∑ri

k=1Nijk; and N ′ is called the equivalent sample size representing the strength of our

belief in the prior distribution of parameters. The BDeu score can be computed efficiently from

the sufficient statistics of the data D.

Given a scoring function, the goal of the search procedure is to identify a best scoring DAG

by searching in the space of all possible DAGs. Since the size of the DAG space is of the order

O(n!2n(n−1)/2) with respect to the number of nodes n, the search problem is considered very

hard. Indeed, it has been proved that finding a best Bayesian network is NP-hard when using

the BDeu scoring criterion (Chickering, 1996).

www.manaraa.com

8

1.1.3 Structure Discovery in Bayesian Networks

A common solution to identifying highly probable local structural features is to use Bayesian

approach. Given a set of observations D, in the Bayesian approach to learn Bayesian networks

from the observations, we compute the posterior probability of a DAG G by

P (G|D) =
P (D|G)P (G)

P (D)
, (1.5)

where P (G) is called the structure prior, P (D|G) is the likelihood of the data, and P (D) is the

marginal probability of the data D.

A structural feature, e.g., an edge or a directed path, is conveniently represented by an

indicator function f such that f(G) is 1 if the feature is present in G and 0 otherwise. The

posterior probability of any structural feature can be computed by averaging over all possible

DAGs:

P (f |D) =
∑
G

f(G)P (G|D). (1.6)

A structural feature is said modular if f(G) =
∏n
i=1 fi(Pai), where each fi(Pai) is an

indicator function from the subset of V \ {i} to {0, 1}. In other words, the representation

of a modular feature can be factorized into the product of local indicator functions. Any

directed edge is a modular feature. For example, an edge u→ v can be represented by setting

fv(Pav) = 1 if and only if u ∈ Pav, and setting fi(Pai) = 1 for all i 6= v. A structural feature

is non-modular if it is not modular, i.e, its representation cannot be factorized like the modular

features. For example, a directed path from s to t (denoted by s t) composed of more than

one directed edges, is a non-modular feature.

Once we have the posterior probability P (f |D) computed, we can make inference about the

feature f based on P (f |D). Thus, the key question we need answer in the problem of structure

discovery is how we can accurately and efficiently compute the posterior probability P (f |D).

As showed in Equation 1.6, the exact computation of these posteriors requires summation

over all possible DAGs, the number of which is super-exponential with respect to the number

of nodes n. Thus, exact Bayesian learning of structural features is hard in terms of both time

and space requirements.

www.manaraa.com

9

Modular features have some good properties in their representations, i.e., f(G) can be fac-

torized. This makes the computation relatively easier. Non-modular features, such as directed

paths (ancestor relations), have no such property. The learning is generally considered harder.

Exact learning algorithms for structure discovery are slow and specialized for only a certain

type of structural features. Alternative approaches attempt to approximate these posteriors.

The central idea is to select a representative set of DAGs G, and estimate the posterior by

P (f |D) ≈
∑

G∈G P (f |G,D)P (G|D)∑
G∈G P (G|D)

. (1.7)

With this approximation, the research problems become how we select the set of repre-

sentative DAGs and how good these approximations are, i.e., how close they are to the exact

posteriors.

1.2 Related Work

In this subsection, we review previous work related to Bayesian network structure learning

and structure discovery.

1.2.1 Bayesian Network Structure Learning

There has been an enormous amount of work on learning Bayesian networks from data.

Methods for this learning problem fall into two categories: constraint-based and score-based.

The constraint-based algorithms estimate conditional independencies in the data and build

the DAGs consistent to these CIs. Typically, this estimation is performed using statistical

or information theoretic measures. Well-known examples are the Peter-Clark (PC) algorithm

(Spirtes et al., 2001) and the Inductive-Causation (IC) algorithm (Pearl, 2000). Other later

work includes the Grow-Shrink (GS) (Margaritis and Thrun, 2000) and Total-Conditioning

(TC) algorithms (Pellet and Elisseeff, 2008) that first estimate each node’s Markov blanket by

performing CI tests then connect nodes in a maximally consistent way. PC or IC algorithms are

guaranteed to return the equivalence class that the underlying Bayesian network G∗ belongs

to if all the CI tests are perfect, i.e., there is no error (neither type I or type II error) in

each performed CI test. Such assumption certainly does not hold in practice since any kind of

www.manaraa.com

10

statistical test will have some probability of making errors given limited data samples. Even

worse, an error of a statistical test can result in propagated errors in the consequent learning

process. Thus, much research on constraint-based approach has been dedicated to improving

the accuracy of CI tests (Bromberg and Margaritis, 2009), alleviating error propagation, or

controlling a certain type of errors (Li and Wang, 2009).

Score-based approach converts the learning problem to an optimization problem. Algo-

rithms following this approach attempt to maximize a scoring function that measures how well

a DAG fits the data (Cooper and Herskovits, 1992; Heckerman et al., 1995). It has been proved

that finding an optimal Bayesian network structure is NP-hard (Chickering, 1996). Algorithms

in this category include exact algorithms that are able to find an optimal solution or heuristic

algorithms that often return sub-optimal models. The research on exact algorithms started with

a family of algorithms using dynamic programming (DP) (Ott et al., 2004; Koivisto and Sood,

2004; Singh and Moore, 2005; Silander and Myllymäki, 2006). These DP algorithms require ex-

ponential time and space, thus are only applicable to problems of moderate size (up to about 30

variables in current desktops). Recently, alternative approaches to finding the optimal Bayesian

network have been proposed and shown being competitive or faster than the DP algorithms.

These approaches include A* search (Yuan et al., 2011; Malone et al., 2011; Yuan and Malone,

2012; Malone and Yuan, 2012, 2013) and Integer Linear Programming (ILP) (Jaakkola et al.,

2010; Cussens, 2011; Bartlett and Cussens, 2013). The A* search based algorithm URLearning

formulates the learning problem as a shortest path finding problem and employs A* search

algorithm to explore the search space (Yuan et al., 2011). ILP based algorithm GOBNILP

(Globally Optimal Bayesian Network learning using ILP) casts the structure learning problem

as a linear program which can be solved efficiently using existing ILP frameworks such as SCIP

(Achterberg et al., 2008). GOBNILP was demonstrated to be able to handle problems with

up to a few hundred variables (Bartlett and Cussens, 2013). However, GOBNILP assumes the

in-degree (or equivalently, the number of parents) of each node is upper-bounded by a small

constant.

Heuristic search method encompasses a broad class of algorithms, varying in the scoring

functions being used, the search strategies being employed, and assumptions being made. The

www.manaraa.com

11

general search strategy is, given a starting point, i.e., any DAG, by adding, deleting or reversing

one or a few edges, the algorithm manages to traverse the DAG space to find a high-scoring

model. As mentioned, there are super-exponential number of possible DAGs. Thus, local search

strategies such as greedy or more sophisticated search algorithms are often used. The searches

will often get stuck in local maxima.

Since DAGs can be grouped into a smaller set of equivalence classes (ECs) and the DAGs

in the same EC are equally expressive in terms of representing probability distributions, some

research proposed to search in the EC space (Madigan et al., 1996; Chickering, 2002a,b; Castelo

and Kocka, 2003). The potential advantages of using the EC space instead of DAG space

include: (1) In the limit of large sample size, there exists a greedy search algorithm that

provably identifies a perfect map of the underlying distribution (Chickering, 2002b); (2) The

cardinality of EC space is smaller than DAG space; (3) Searching in the EC space improves the

efficiency of search because moves within the same EC can be avoided. The first advantage says

that some theoretical guarantee can be made under the assumption of unlimited sample size.

However, this assumption is too strong and does not hold in reality. The second advantage does

not alleviate substantially the learning complexity either as showed in (Gillispie and Perlman,

2001) that the ratio of the number of DAGs to the number of equivalence classes reaches an

asymptote around 3.7 with as few as ten nodes. Searching in the EC space may also suffer from

overhead due to compulsory additional operations, e.g., converting DAGs to its equivalence class

partial DAG representation and vice versa (Chickering, 2002b). Thus, although theoretically

promising, in practice this strategy did not show much improvement on the simple greedy

search applied to the DAG space.

Finally, ideas combining both constraint-based and score-based approaches have also been

explored. A well-known algorithm is Max-Min Hill-Climbing (MMHC) algorithm (Tsamardinos

et al., 2006). MMHC first estimates the parents and children (PC) set of each variable using a

local discovery algorithm called MMPC (Tsamardinos et al., 2003). It then performs a simple

greedy hill-climbing search with the constraint that the neighbors of each variable must be in

the variable’s PC set. Extensive empirical evaluation has showed that MMHC outperformed

on average other heuristic algorithms in terms of both the quality of reconstruction and the

www.manaraa.com

12

computational efficiency thus it was claimed to be the current state-of-the-art. The success of

MMHC builds on the idea of constraining the greedy search using the candidate PC set. How-

ever, the simple greedy search in the second phase does not provide any theoretical guarantee

and would easily get stuck in local maxima.

An empirical evaluation of the impact of learning strategies on the quality of learned

Bayesian networks can be found in (Malone et al., 2015).

1.2.2 Structure Discovery in Bayesian Networks

The existing methods for structure discovery in Bayesian networks can be divided into two

categories: model selection approach and Bayesian approach.

Model selection approach seeks out a DAG G that maximizes certain score metric, e.g.,

the posterior probability P (G|D) given observed data D, then infers the structures based on

this single model. This is problematic because: (1) the assumed “data generating DAG” is

unidentifiable from the observational data due to the so-called Markov equivalence of multiple

different DAGs (Verma and Pearl, 1990); and (2) other Markov equivalence classes may fit the

data almost equally well due to the noises in the data (Friedman and Koller, 2003). The latter

often happens in domains where the amount of data is small relative to the size of the model.

Thus, inferring the local structures based on the maximum-a-posteriori (MAP) structure may

give unwarranted conclusions.

Bayesian approach circumvents the model uncertainty problem by learning the posterior

distribution of these structural features (Friedman and Koller, 2003). However, exact compu-

tation of these posteriors is hard due to the super-exponentially large DAG space. Recently, a

number of dynamic programming (DP) algorithms successfully reduced the computation to ex-

ponential time and space. For example, the algorithms described in (Koivisto and Sood, 2004)

and (Koivisto, 2006a) can compute the exact marginal posterior probability of any modular

features (e.g., an edge) and the exact posterior probabilities for all n(n− 1) potential edges in

O(n2n) time and space, assuming that the in-degree, i.e., the number of parents of each node, is

bounded by a constant. To deal with (harder) non-modular feature, e.g., ancestor relations, an

analogous DP algorithm takes O(n3n) time and O(3n) space (Parviainen and Koivisto, 2011).

www.manaraa.com

13

However, these algorithms require order-modular structural prior P (G) and perform summa-

tion over order space instead of DAG space. As a result, the computed posteriors would bias

towards DAGs compatible with more linear orders and the Markov equivalence is not respected

either (Friedman and Koller, 2003). To adhere to the uniform prior, Tian and He (2009) devel-

oped a novel DP algorithm directly summing over the DAG space. This algorithm is capable

of evaluating all directed edges (modular features) in O(n3n) time and O(n2n) space. But

whether and how this idea can be extended to deal with non-modular features need further

investigation. In one chapter of this dissertation, we will study this problem.

Exact algorithms require exponential time and space and specialize on only one certain

type of structural features. Thus, much research has resorted to approximate methods. The

central idea is to select a representative set of DAGs G, and estimate the posterior by averaging

over these models, i.e., P (f |D) ≈
∑

G∈G P (f |G,D)P (G|D)/
∑

G∈G P (G|D). Among these

approaches are a group of methods based on Markov Chain Monte Carlo (MCMC) technique,

which provides a principled way to sample DAGs from their posterior distribution P (G|D)

(Madigan et al., 1995; Friedman and Koller, 2003; Eaton and Murphy, 2007; Ellis and Wong,

2008; Grzegorczyk and Husmeier, 2008; Niinimäki et al., 2011; Niinimäki and Koivisto, 2013).

However, MCMC-based methods suffer from the problem of no guarantee on the approximation

quality in finite runs (the Markov chains may not mix and converge in finite runs).

Another approach proposes to construct G with a set of high-scoring DAGs. In particular,

Tian et al. (2010) studied the idea of using the k-best DAGs for Bayesian model averaging

(BMA). The estimation accuracy could be monotonically improved by spending more time to

compute for larger k, and the model averaging over these k-best models achieved good accuracy

in structure discovery (Tian et al., 2010). As they showed experimentally, one main advantage

of constructing k-best models over sampling is that MCMC method exhibited a non-negligible

variability across different runs because of the randomness nature of MCMC, while the k-best

method always gave consistent estimation due to its deterministic nature.

One issue with the k-best DAG algorithm (we will call it kBestDAG) is that the best DAGs

found actually coalesce into a fraction k of Markov equivalence classes, where the DAGs within

each class represent the same set of conditional independence assertions and determine the same

www.manaraa.com

14

statistical model. It is therefore desirable if we are able to directly find the k-best equivalence

classes of Bayesian networks.

1.2.3 Scaling Up Bayesian Network Structure Learning

As mentioned, exact algorithms for Bayesian learning of structural features using DP tech-

niques require exponential time and space. The largest problems these algorithms can solve on

a typical desktop computer with a few GBs of memory do not exceed 25 variables (Koivisto,

2006a). Nowadays, real world applications easily involve thousands of variables. Thus, it is

urgent to scale up the learning algorithms to meet the needs of these applications. However,

there is little work done in the area of structure discovery. Instead, a lot of has been done for

the model selection problem, i.e., finding the optimal Bayesian networks.

As discussed, the family of dynamic programming (DP) algorithms for optimal Bayesian

network learning run in time and space of O(n2n) (Ott et al., 2004; Koivisto and Sood, 2004;

Singh and Moore, 2005; Silander and Myllymäki, 2006). While both the time and space require-

ments grow exponentially as the number of variables n increases, it is the space requirement

being the bottleneck in practice. Noting this, several techniques have been developed to reduce

the space usage.

In (Malone et al., 2011), the DP algorithm for finding optimal Bayesian networks in (Singh

and Moore, 2005) is improved such that only the scores and information for two adjacent layers

in the recursive graph are kept in memory at once. This manipulation reduces the memory

usage to O(
(
n
n/2

)
). And they showed the implementation of the algorithm solved a problem

of 30 variables in about 22 hours using 16 GB memory. However, their implementation needs

external memory (i.e., hard disk) to store the entire recursive graph. This may slow down the

algorithm due to the slow access to hard disk. Further, the algorithm is not quite scalable as

the O(
(
n
n/2

)
) space usage still grows very fast as n increases.

Alternatively, Parviainen and Koivisto (2009) proposed several schemes to trade space

against time. If little space is available, a divide-and-conquer scheme recursively splits the

problem to subproblems, each of which can be solved completely independently. This scheme

results in time 22n−snO(1) in space 2snO(1) for any s = n/2, n/4, n/8, ..., where s is the size

www.manaraa.com

15

of the subproblems. If moderate amounts of space are available, a pairwise scheme splits the

search space by fixing a class of partial orders on the set of variables. This manipulation yields

run-time 2n(3/2)pnO(1) in space 2n(3/4)pnO(1) for any p = 0, 1, ..., n/2 where p is a parameter

controlling the space-time trade-off. Although both schemes make it practical to solve larger

problems using limited space, they make a huge sacrifice in running time.

1.2.4 Parallel Algorithms for Structure Learning and Discovery

Parallel computing aims to design systems and algorithms that use multiple processing

elements simultaneously to solve a problem. It allows us to overcome the time and space

limitations by using supercomputers, which are usually equipped with thousands of processors

and several terabytes of memory. If the computation steps in solving a problem are independent,

the running time can be significantly reduced by parallelizing the execution of these independent

steps on multiple processors.

Several parallel algorithms have already been developed for solving the structure learning

problem. First, as mentioned by the authors, the pairwise scheme proposed in (Parviainen and

Koivisto, 2010) allows easy parallelization on up to 2p processors for any p = 0, 1, ..., n/2.

Each of the processors solves a subproblem independently in time 2n(3/4)pnO(1) in space

2n(3/4)pnO(1). Compared to the sequential algorithm that runs in time and space of 2nnO(1),

the parallel efficiency is (2/3)p, which is suboptimal. Further, they only implemented the

pairwise scheme to compute the subproblems. Thus, although their results suggest the im-

plementation is feasible up to around 31 variables, their estimation ignores the parallelization

overhead that generally becomes problematic in parallelization. Later, Tamada et al. (2011)

presented a parallel algorithm that splits the search space so that the required communication

between subproblems is minimal. The overall time and space complexity is O(nσ+12n), where

σ = 0, 1..., > 0 controls the communication-space trade-off. This algorithm, as mentioned, has

slightly greater space and time complexities than the algorithm in (Parviainen and Koivisto,

2009) because of redundant calculations of DP steps. Their implementation of the algorithm

was able to solve 32-node network in about 5 days 14 hours using 256 processors with 3.3 GB

memory per processor. However, it did not scale well on more than 512 processors as the par-

www.manaraa.com

16

allel efficiency decreased significantly from 0.74 on 256 processors to 0.39 on 1024 processors.

Nikolova et al. (2009, 2013) described a novel parallel algorithm that realizes direct paralleliza-

tion of the sequential DP algorithm in Ott et al. (2004) with optimal parallel efficiency. This

algorithm is based on the observation that the subproblems constitute a lattice equivalent to an

n-dimensional (n-D) hypercube, which has been proved to be a very powerful interconnection

network topology used by most of modern parallel computer systems (Dally and Towles, 2004;

Ananth et al., 2003; Loh et al., 2005). An advantage of this hypercube algorithm is that it

does not calculate redundant steps or scores. Their implementation of the algorithm has been

showed scalable on up to 2048 processors (Nikolova et al., 2013). Using 1024 processors with

512 MB memory per processor, they solved a problem with 30 variables in 1.5 hours.

In contrast, using parallel computing to speed and scale up structure discovery has not

been studied so extensively. To our knowledge, there are no parallel algorithms developed

for computing the exact posterior probability of structural features. Although Parviainen and

Koivisto (2010) extended the parallelizable partial-order scheme to the structure discovery

problem, they did not offer any explicit way to parallelize it. Although the DP algorithms for

finding the optimal DAG and for the local structure discovery are analogous, they differ in

some significant places. These differences prohibit the direct adaption of the existing parallel

algorithms for structure learning to structure discovery.

1.3 Thesis Overview

In this dissertation, we develop algorithms to achieve more accurate, efficient and scal-

able structure learning and discovery in Bayesian networks. Further, we demonstrate these

algorithms in applications of systems biology and educational data mining. The rest of the

dissertation is organized as follows.

In chapter 2, we study the problem of learning a Bayesian network structure from the data

and propose a novel heuristic algorithm that takes advantage of the idea of curriculum learning

and learns Bayesian network structures by stages. We prove theoretical advantages of our

algorithm and also empirically show that it outperforms the state-of-the-art heuristic approach

in learning Bayesian network structures under several different evaluation metrics.

www.manaraa.com

17

In chapter 3, we develop an algorithm to efficiently enumerate the k-best equivalence classes

of DAGs. Our algorithm is capable of finding much more best DAGs than the previous algo-

rithm that directly finds the k-best DAGs (Tian et al., 2010). We demonstrate our algorithm

in the task of Bayesian model averaging that estimates the posterior probabilities of local

structural features.

In chapter 4, we study how parallelism can be used to tackle the exponential time and space

complexity in the exact Bayesian structure discovery. We present a parallel algorithm capable

of computing the exact posterior probabilities of all possible directed edges with optimal parallel

space efficiency and nearly optimal parallel time efficiency. We show that our algorithm can be

used for discovering the yeast pheromone response pathways.

In chapter 5, we develop novel algorithms for exact Bayesian learning of ancestor relations

in Bayesian networks. Existing algorithm assumes an order-modular prior over DAGs that does

not respect Markov equivalence. Our algorithms allows uniform prior and respect the Markov

equivalence. We apply our algorithm to a biology data set for discovering protein signaling

pathways.

In chapter 6, we study the problem of estimating the prerequisite relationships between

skills from student performance data. We introduce Combined student Modeling and prerequi-

site Discovery (COMMAND), a novel algorithm for jointly inferring a skill prerequisite graph

and a student model. COMMAND learns the prerequisite relations as a Bayesian network

that allows modeling of the full prerequisite structure of skills. COMMAND is useful for de-

signing intelligent tutoring systems that assess student knowledge or that offer remediation

interventions to students.

In chapter 7, we conclude the dissertation with a summary of contributions and directions

for future research.

www.manaraa.com

18

CHAPTER 2. CURRICULUM LEARNING OF BAYESIAN NETWORK

STRUCTURES

In the problem of Bayesian network structure learning, one tries to find a DAG that best

explains the observed data. Score-based search approach converts the learning problem to an

optimization problem and attempts to maximize a scoring function over the space of all possible

DAGs. Heuristic algorithms try to find a good DAG without searching the entire DAG space,

thus are more efficient than exact algorithms.

In this chapter, we take advantage of the idea of curriculum learning and design a novel

heuristic algorithm to learn a Bayesian network structure from data.

2.1 Introduction

Most of the current approaches to Bayesian network structure learning try to discover the

dependency relations between all the variables by looking at all the training samples at once.

This is in contrast to the way human learn. Human rarely consider all the variables as well

as all the data samples at the same time; instead, they typically start with the most common

subset of samples to identify the dependency relations between a small subset of variables, and

only after some knowledge (i.e., a partial model) is learned would they turn to less common

samples that involve additional variables. By learning in this more organized and progressive

way, human are able to accumulate a large amount of knowledge both accurately and efficiently.

The learning strategy described above can be seen as an instance of curriculum learning

(Bengio et al., 2009), which originates from the idea that learning starting with simpler ex-

amples or easier tasks can help obtain faster convergence and better solutions. In particular,

the strategy belongs to a type of curriculum learning called incremental construction (Tu and

www.manaraa.com

19

A S

T L B

E

X D

A S

T L B

E

X D

A S

T L B

E

X D

A S

T L B

E

X D
�� ����

Figure 2.1: An illustrative example of curriculum learning of a Bayesian network structure. Given
a curriculum ({S,B,D}, {S,B,D,L,E,X}, {S,B,D,L,E,X,A, T}), we learn the Bayesian network
structure in three stages: (1) learn a subnet G1 over {S,B,D} from scratch; (2) learn a larger sub-
net G2 over {S,B,D,L,E,X} with G1 as the start point of search; (3) learn a full network with G2 as
the start point. Each subnet (in red) is conditioned on the rest of the variables (in green).

Honavar, 2011), which decomposes the target structure into multiple components and learns

one component at each curriculum stage.

Based on this incremental construction idea, we design a novel heuristic algorithm that

learns the Bayesian network structure by stages. At each stage a subnet is learned over a

selected subset of the random variables conditioned on fixed values of the rest of the variables.

The selected subset grows with stages until it includes all the variables at the final stage.

Figure 2.1 shows an illustrative example of our algorithm. We theoretically prove that the

target subnet at each stage is increasingly closer to the target Bayesian network with the

advance of the curriculum stages. In our experiments, we first show that not only does our

algorithm learn more likely Bayesian networks given the training data, but it can also recover

Bayesian networks that are better than the state-of-the-art heuristic approach with respect to

both the structures of the target Bayesian networks and the distributions represented by the

target Bayesian networks. We also show that our algorithm gives rise to a better classification

performance when using the learned Bayesian network as classifiers.

2.2 Curriculum Learning

Humans and animals learn much better when the examples are not randomly presented

but organized in a meaningful order which starts from relatively simple concepts and gradually

introduces more complex ones. This idea has been formalized in the context of machine learning

as curriculum learning (Bengio et al., 2009). A curriculum is a sequence of weighting schemes

www.manaraa.com

20

of the training data, denoted by (W1,W2, ...,Wm). The first scheme W1 assigns more weight

to “easier” training samples, and each next scheme assigns slightly more weight to “harder”

examples, until the last scheme Wm that assigns uniform weight to all examples. How to

measure the “easiness” or complexity of training samples may vary depending on the learning

problems, and no general measurement has been proposed. Learning is done iteratively, each

time from the training data weighted by the current weighting scheme and initialized with the

learning result from the previous iteration.

Curriculum learning has been successfully applied to many problems, such as learning lan-

guage models and grammars (Elman, 1993; Spitkovsky et al., 2010; Tu and Honavar, 2011)

and object recognition and localization (Kumar et al., 2010). There have also been attempts to

explain the advantages of curriculum learning. Bengio et al. (2009) proposed that a well chosen

curriculum strategy can act as a continuation method (Allgower and Georg, 1990), which first

optimizes a highly smoothed objective and then gradually considers less smoothing. Tu and

Honavar (2011) contended that in learning structures such as grammars, an ideal curriculum

decomposes the structure into multiple components and guides the learner to incrementally con-

struct the target structure. More recently, a few extensions of the original idea of curriculum

learning have been proposed (Kumar et al., 2010; Jiang et al., 2015).

2.3 Curriculum Learning of Bayesian Network Structures

The basic idea to apply curriculum learning and incremental construction in Bayesian

network structure learning is that we can define a sequence of intermediate learning targets

(G1, ..., Gm), where each Gi is a subnet of the target Bayesian network over a subset of variables

X(i) conditioned on certain fixed values x′(i) of the rest of the variables X′(i), where X(i) ⊆ X,

X′(i) = X \ X(i) and X(i) ⊂ X(i+1); at stage i of curriculum learning, we try to learn Gi

from a subset of data samples with X′(i) = x′(i). In terms of the sample weighting scheme

(W1,W2, ...,Wm), each Wi assigns 1 to those samples with X′(i) = x′(i) and 0 to the other

samples.

www.manaraa.com

21

However, training samples are often very limited in practice and thus the subset of samples

with X′(i) = x′(i) would typically be very small. Learning from such small-sized training sample

is deemed unreliable. A key observation is that when we fix X′(i) to different values, our learning

target is actually the same DAG structure Gi but with different parameters (CPDs). Thus, we

can make use of all the training samples in learning Gi at each stage by revising the scoring

function to take into account multiple versions of parameters. This strategy extends the original

curriculum learning framework.

Note that in the ideal case, the subnet learned in each stage would have only one type of

discrepancy from the truth Bayesian network: it would contain extra edges between variables

in X(i) due to conditioning on X′(i). More specifically, such variables in X(i) must share a

child node that is in, or has a descendant in, X′(i) such that they are not d -separated when

conditioning on X′(i).

2.3.1 Scoring Function

In this paper, we use Bayesian score to design a scoring function that uses all training sam-

ples. Assume the domain for X′(i) is {x′(i),1, ...,x
′
(i),q}. Then we can have a set of data segments

Di = {Di,1, ..., Di,q} by grouping samples based on the values of X′(i) and then projecting on

X(i). Assuming Di,1, ..., Di,q are generated by the same DAG Gi but with “independent” CPDs,

we can derive

P (Gi, Di) = P (Gi)

q∏
j=1

P (Di,j |Gi) = P (Gi)
1−q

q∏
j=1

P (Gi, Di,j). (2.1)

If we take logarithm for both sides, we obtain

logP (Gi, Di) = (1− q) logP (Gi) +

q∑
j=1

logP (Gi, Di,j). (2.2)

If we set uniform prior for Gi, i.e., P (Gi) ∝ 1, we then have

logP (Gi, Di) = C +

q∑
j=1

logP (Gi, Di,j), (2.3)

www.manaraa.com

22

where C is a constant. We use BDeu score (Buntine, 1991) for discrete variables, i.e., logP (Gi, Di,j) =

scoreBDe(Gi, Di,j), so we have the following scoring function:

score(Gi, Di) =

q∑
j=1

scoreBDe(Gi, Di,j), (2.4)

i.e., the sum of BDe scores which are individually evaluated on each of the data segments

Di,1, ..., Di,q.

One common problem with curriculum learning is that the learner may overfit the inter-

mediate learning targets, especially when the number of variables is large and thus we have

to divide learning into many stages. Overfitting also occurs when the sample size is small.

Therefore, we introduce a penalty function that penalizes the size of the network especially

when the number of variables is large or the sample size is small

Penalty(Gi : Di) =

(
a

SS
+
V (Gi)

b

)
E(Gi), (2.5)

where SS is the sample size, V (Gi) and E(Gi) denote the number of variables and number of

edges inGi respectively, and a and b are positive constants. The penalty function is proportional

to E(Gi) which represents the complexity of the network. The impact of E(Gi) is enlarged with

either larger number of variables or smaller sample size. Combined with the penalty function,

the scoring function becomes

score(Gi : Di) =

q∑
j=1

scoreBDe(Gi, Di,j)−
(
a

SS
+
V (Gi)

b

)
E(Gi). (2.6)

2.3.2 Curriculum

A remaining fundamental question is: what curriculum, i.e., the sequence of variable sets

(X(1), ...,X(m)), shall we use? Or equivalently, from stage i − 1 to i, which variables X(i−1,i)

should we select to produce X(i) = X(i−1) ∪X(i−1,i)?

Intuitively, we should select the variables that are most connected to the current set of

variables X(i−1), because otherwise we may learn more edges that do not exist in the target

Bayesian network. Without knowing the true connectivity, we can measure the strength of the

dependency (e.g., using mutual information) with the current set of variables to heuristically

www.manaraa.com

23

estimate the connectivity. Given a set of variables X, for every variable Y ∈ X \X(i−1), we

define the average pairwise mutual information by

AveMI(Y,X(i−1)) =
∑

X∈X(i−1)

MI(X,Y)/|X(i−1)|. (2.7)

In stage i, we select X(i−1,i) in the following way. We first pick variable Y1 with the largest

AveMI(Y1,X(i−1)); we then pick the second variable Y2 with the largest AveMI(Y2,X(i−1) ∪

{Y1}); this is repeated until we have picked a pre-specified number of variables. The number

of variables selected, |X(i−1,i)|, is called the step size and is a parameter of our algorithm. The

step size can be a constant, meaning that we add the same number of variables in each stage.

Or it can be different among stages. Intuitively, the smaller the step size is, the more cautious

and less time-efficient the algorithm is, and also the more likely the algorithm would overfit the

intermediate Bayesian networks.

Note that in the first stage, X(i−1) = X(0) is an empty set and thus we cannot select the

first variable Y1 ∈ X \ X(0) by computing AveMI(Y1,X(0)). Instead, we select the variable

with the largest AveMI with all the other variables in X and then select additional variables

in the sequential way as described above. The size s of subset X(1) determines how large the

initial subnet we start with. When s = |X|, the algorithm learns the network in one step.

When s = 2, the subnet has only two variables and learning is trivial. Thus, in our design we

set s = 3.

The details of constructing a curriculum is provided in Algorithm 2.1. We now provide an

example of making a curriculum. Assume X = {A,S, T, L, B, E, X, D}. S has the largest

AveMI among all the variables, so we get the initial sequence I = (S). Then we calculate

AveMI for every variable in {A, T, L,B,E,X,D} with I, and find that B has the largest

AveMI. So we append B to I. Repeating the procedure described above, we finally get I =

(S,B,D,L,E,X,A, T), in which every variable is the one that is most likely to have connections

with the variables before it. If we initialize X(1) with 3 variables (X(1) = {S,B,D}) and set

the step size to 2, our curriculum would be ({S,B,D}, {S,B,D,L,E}, {S,B,D,L,E,X,A},

{S,B,D,L,E,X,A, T}).

www.manaraa.com

24

Algorithm 2.1 Construct a curriculum: ConstructCurriculum(X, D, s, t)

1: Input: variable set X, training data D, size of X(1) s, step size t.
2: for i, j ∈ {1, ..., n} and i 6= j do
3: Compute empirical mutual information MI(Xi, Xj)
4: end for
5: X∗ ← argmaxX AveMI(X,X \X)
6: X(1) ← {X∗}
7: Y ← X \X(1)

8: i← 1
9: for i < s do

10: Y ∗ ← argmaxY ∈Y AveMI(Y,X(1))
11: X(1) = X(1) ∪ {Y ∗}
12: Y ← Y \ {Y ∗}
13: i← i+ 1
14: end for
15: m← d (n−s)t + 1e
16: i← 2
17: for i ≤ m do
18: X(i) = X(i−1)
19: j ← 0
20: for j < t do
21: if Y 6= ∅ then
22: Y ∗ ← argmaxY ∈Y AveMI(Y,X(i))
23: X(i) = X(i) ∪ {Y ∗}
24: Y ← Y \ {Y ∗}
25: j ← j + 1
26: end if
27: end for
28: i← i+ 1
29: end for
30: return (X(1), ...,X(m))

www.manaraa.com

25

2.3.3 Algorithm

Given the training data D, size of initial set X(1) and step size t, we first construct

the curriculum (X(1), ...,X(m)), where X(m) = X. Then we run the MMPC algorithm in

(Tsamardinos et al., 2003) to generate the parents and children (PC) set Si for each Xi. Let

S = (S1, ..., Sn). In each learning stage of the curriculum, we use score-based search to find

a good partial network with the partial network learned in the previous stage plus the new

variables with no edge attached as the start point. Algorithm 2.2 sketches our algorithm, in

which search(Di,X(i),S, Gi−1) can be any search algorithm that starts from Gi−1 and searches

the space of DAGs over variables X(i) to optimize our scoring function with training data Di.

We use PC set S to constrain the search, i.e., for variable Xi, only edges included in its PC

set Si are considered during the search. This helps prevent adding too many spurious edges.

In our implementation, we simply use greedy hill climbing as the search algorithm.

In some stages, the number of data segments does not change although additional variables

are selected. In this case, it can be shown that the subnet learned in the previous stage plus

the new variables with no edge attached is already a local optimum, and therefore we can skip

the stage without changing the learning result.

Algorithm 2.2 Curriculum Learning of Bayesian network structure

1: Input: variable set X, training data D, size of X(1) s, step size t.
2: (X(1), ...,X(m))← ConstructCurriculum(X, D, s, t)
3: for i ∈ {1, ..., n} do
4: Si ←MMPC(Xi, D)
5: end for
6: S← (S1, ..., Sn)
7: Initialize G0 to a network containing variables in X(1) with no edge.
8: i← 1
9: for i ≤ m do

10: Generate the set of data segments Di = {Di,1, ..., Di,q} based on the values of X \X(i)

11: Gi ← search(Di,X(i),S, Gi−1)
12: i← i+ 1
13: end for
14: return Gm

www.manaraa.com

26

2.4 Theoretical Analysis

Curriculum learning specifies a sequence of intermediate learning targets. Ideally, each

intermediate target should be closer to the subsequent targets than any of its predecessors

in the sequence. In this section we show that our curriculum learning approach to learning

Bayesian networks satisfies this desired property.

With Bayesian networks as our learning targets, there are two different ways to measure

the distance between them. The first is to measure the distance between the structures of

two Bayesian networks. One such distance measure is the structural Hamming distance (SHD)

(Tsamardinos et al., 2006), which measures the number of extra, missing or differently ori-

ented edges between the two CPDAGs that respectively represent the equivalence classes of

two Bayesian networks. The second is to measure the distance between the probabilistic dis-

tributions defined by two Bayesian networks. One such distance measure is the total variation

distance (Csisz et al., 1967). With discrete random variables, the total variation distance

between two distributions can be defined as:

dTV (P,Q) =
1

2

∑
X

|P (X)−Q(X)| .

Below we analyze our curriculum learning approach based on these two types of distance

measures respectively and show that our approach satisfies the desired property based on both

distance measures.

2.4.1 Analysis Based on Distance between Structures

Suppose X(i) is the set of variables selected in curriculum stage i and X′(i) = X \X(i) is the

rest of the variables. Recall that we try to learn a subnet of the true Bayesian network over

variables in X(i) that is conditioned on fixed values of variables in X′(i). Therefore, the actual

learning target at stage i is a Bayesian network Gi such that: (a) between variables in X(i),

the edges are connected in accordance with the true Bayesian network except that there might

be extra edges between variables that share one or more descendants in X′(i) (recall that the

values of the variables in X′(i) are fixed at stage i); (b) the variables in X′(i) are fully connected

with each other (because at stage i we regard the joint assignments to the variables in X′(i) as

www.manaraa.com

27

the conditions and do not model any conditional independence between them); (c) there is an

edge between each variable in X(i) and each variable in X′(i) (because the subnet over X(i) is

conditioned on all the variables in X′(i)). The orientation of the edges described in (b) and (c)

can be arbitrary since it is not actually to be learned at stage i , but if we assume that these

edges are oriented in a way that is consistent with the true Bayesian network then we have the

following theorem.

Theorem 2.1. For any i, j, k s.t. 1 ≤ i < j < k ≤ n, we have

dH(Gi, Gk) ≥ dH(Gj , Gk)

where dH(Gi, Gj) is the structural Hamming distance (SHD) between the structures of two

Bayesian networks Gi and Gj.

Proof. At each stage of the curriculum, a set of variables V = X(i) \X(i−1) become selected.

This leads to two changes to the intermediate target Bayesian network: first, some extra edges

between variables in X(i−1) that share descendants in V are removed because their descendants

no longer have fixed values; second, some edges connected to variables in V are removed to

make the subnet of the variables in X(i) consistent with the true Bayesian network. In other

words, we always remove edges and never add or re-orient any edge of the Bayesian network at

each stage of the curriculum. Since the corresponding CPDAG has the same structure as the

Bayesian network except for some edges becoming undirected, it can also be shown that only

edge-removal occurs to the CPDAG at each stage of the curriculum. Therefore, the structural

Hamming distance dH(Gi, Gj) is simply the number of edges removed during stages i+ 1 to j.

Since i < j < k, the set of edges removed during stages i + 1 to k is a superset of the set of

edges removed during stages j + 1 to k. Therefore, we have dH(Gi, Gk) ≥ dH(Gj , Gk).

2.4.2 Analysis Based on Distance between Distributions

Based on the discussion in the previous subsection, it can be seen that the intermediate

learning target Gi of stage i represents a probabilistic distribution P (X(i)|X′(i))Q(X′(i)), where

P denotes the true conditional distribution of X(i) given X′(i) as represented by the target

www.manaraa.com

28

Bayesian network, and Q denotes an estimated distribution over X′(i) (e.g., simply estimated

based on the histogram built from the training data). We can prove the following theorem.

Theorem 2.2. For any i, j, k s.t. 1 ≤ i < j < k ≤ n, we have

dTV (Gi, Gk) ≥ dTV (Gj , Gk)

where dTV (Gi, Gj) is the total variation distance between the two distributions defined by the

two Bayesian networks Gi and Gj.

Proof. For any i < j, let Yij = X(j) \X(i). We have

dTV (Gi, Gj) =
1

2

∑
X

∣∣∣P (X(i)|X′(i))Q(X′(i))− P (X(j)|X′(j))Q(X′(j))
∣∣∣

=
1

2

∑
X

P (X(i)|X′(i))
∣∣∣Q(X′(i))− P (Yij |X′(j))Q(X′(j))

∣∣∣
=

1

2

∑
X′

(i)

∣∣∣Q(X′(i))− P (Yij |X′(j))Q(X′(j))
∣∣∣

Therefore, we have

dTV (Gi, Gk) =
1

2

∑
X′

(j)

∑
Yij

∣∣∣Q(X′(i))− P (Yik|X′(k))Q(X′(k))
∣∣∣

and

dTV (Gj , Gk) =
1

2

∑
X′

(j)

∣∣∣Q(X′(j))− P (Yjk|X′(k))Q(X′(k))
∣∣∣

=
1

2

∑
X′

(j)

∣∣∣∣∣∣
∑
Yij

Q(X′(i))−
∑
Yij

P (Yik|X′(k))Q(X′(k))

∣∣∣∣∣∣
Because the absolute value is sub-additive, we have

∑
Yij

∣∣∣Q(X′(i))− P (Yik|X′(k))Q(X′(k))
∣∣∣ ≥

∣∣∣∣∣∣
∑
Yij

(
Q(X′(i))− P (Yik|X′(k))Q(X′(k))

)∣∣∣∣∣∣
Therefore,

dTV (Gi, Gk) ≥ dTV (Gj , Gk)

www.manaraa.com

29

2.5 Experiments

In this section, we empirically evaluate our algorithm and compare it with MMHC (Tsamardi-

nos et al., 2006), the current state-of-the-art heuristic algorithm in Bayesian network structure

learning. For both algorithms, we used BDeu score as given in Equation 1.4 with the equivalent

sample size 10 as the scoring function and used the MMPC module included in Causal Explorer

(Aliferis et al., 2003) with the default setting to generate the PC set. For MMHC, we used the

settings mentioned by Tsamardinos et al. (2006).

We conducted two sets of experiments that evaluated the learned Bayesian networks in

different ways. In the first set of experiments we learned from synthetic training data sampled

from ground-truth Bayesian networks and then compared the network structures recovered by

our curriculum-based learning algorithm (CL) and MMHC using a set of standard Bayesian

network structure evaluation metrics. In the second set of experiments, we learned from the

real data for classification tasks, used the learned Bayesian network structures as classifiers and

then compared the classification performance.

When running our algorithm on the datasets, we set the step size (introduced in sec-

tion 2.3.2) to 1, 2 and 3 and learned three Bayesian networks; we also learned a Bayesian

network by hill climbing with no curriculum. We then picked the Bayesian network with the

largest BDeu score as the final output. We tuned the parameter a and b of the penalty function

(Equation 2.5) on a separate validation set and fixed them to 1000 and 100 respectively.

2.5.1 Experiments on Bayesian Network Reconstruction

The ability of Bayesian network structure learning algorithms to recover Bayesian network

structures from training data randomly sampled from the ground-truth networks with known

structures and parameters could be used to measure the quality of the learning algorithms.

www.manaraa.com

30

2.5.1.1 Experimental Setup

We collected 10 benchmark Bayesian networks from the bnlearn repository1. The statistics

of these Bayesian networks are shown in Table 2.1. From each of these Bayesian networks,

we generated datasets of various sample sizes (SS = 100, 500, 1000, 5000, 10000, 50000). For

each sample size, we randomly generated 5 datasets and reported the algorithm performance

averaged over these 5 datasets.

Table 2.1: Bayesian networks used in experiments.

Num. Num. Max in/out- Cardinality Average
Network vars edges degree range cardinality

alarm 37 46 4/5 2-4 2.84
andes 223 338 6/12 2-2 2.00
asia 8 8 2/2 2-2 2.00
child 20 25 2/7 2-6 3.00
hailfinder 56 66 4/16 2-11 3.98
hepar2 70 123 6/17 2-4 2.31
insurance 27 52 3/7 2-5 3.30
sachs 11 17 3/6 3-3 3.00
water 32 66 5/3 3-4 3.63
win95pts 76 112 7/10 2-2 2.00

Cardinality denotes the number of values that a variable can take.

2.5.1.2 Evaluation Metrics

We used four metrics to evaluate the learned Bayesian networks: BDeu, BIC, KL and

SHD. The first three metrics were evaluated on a separate test dataset of 5000 samples for

each Bayesian network. The BDeu score, the scoring function used in our learning algorithms,

measures how likely the network is given the data. BIC (Bayesian information criterion) can

be regarded as the likelihood of the learned structure after having seen the data with a penalty

term of model complexity measured by the number of parameters:

BIC(G : D) =

n∑
i=1

qi∑
j=1

ri∑
k=1

Nijk log
Nijk

Nij
− 1

2
log (N)

n∑
i=1

(ri − 1)qi, (2.8)

1http://www.bnlearn.com/bnrepository/.

http://www.bnlearn.com/bnrepository/

www.manaraa.com

31

where n denotes the number of variables, N is the number of samples in the test dataset, ri

denotes the number of values that Xi can take, qi =
∏
Xl∈Pai rl denotes the number of values

that the parent set Pai of Xi can take, Nijk is the number of samples in D where Xi = k and

Pai = j, and Nij is the number of samples with Pai = j in D.

Both BDeu and BIC have the limitation that they are only reasonable under certain as-

sumptions. To directly measure how close the gold-standard network and the learned network

are, we used Kullback-Leibler divergence (KL) between the joint probability distributions as-

sociated respectively with the true network(PT) and the learned network(PL):

KL(PT , PL) =
∑
X

PT (X) log

(
PT (X)

PL(X)

)
. (2.9)

For the convenience of estimation, we used an equivalent form of Equation 2.9 by Acid and

de Campos (2001):

KL(PT , PL) = −HPT
(X) +

∑
Xi∈X

HPT
(Xi)−

∑
Xi∈X,PaL(Xi)6=∅

MIPT
(Xi, PaL(Xi)), (2.10)

where HPT
denotes the Shannon entropy with respect to PT . In Equation 2.10, the first two

terms are not dependent on the learned network, so following Tsamardinos et al. (2006), we

only calculate and report the last term of the equation. Note that the last term appears with a

negative sign, and hence the higher its value is, the smaller the KL-divergence is and the closer

the learned network is to the true network.

Structural Hamming distance (SHD) is another distance metric, which directly measures

the difference between the structures of the two networks as explained in Section 2.4.

2.5.1.3 Results

Table 2.2 shows the comparison between our algorithm (CL) and MMHC. Note that we

choose to show the average ratios between the raw scores and the corresponding scores of CL.

This is because the raw scores from different datasets vary significantly in order of magnitude,

and the average of raw scores would be dominated by those from a small subset of the datasets.

It can be seen that CL outperforms MMHC in almost all the cases, in terms of both the

scores and the number of winning networks. A notable exception is that when SS = 100, CL

under-performs MMHC on all the networks for three of the four metrics.

www.manaraa.com

32

Table 2.2: Comparison between CL and MMHC on four metrics

Sample Size (SS)

Metric Algorithm 100 500 1000 5000 10000 50000

BDeu
CL 1(0) 1(10) 1(9) 1(8) 1(9) 1(7)
MMHC 0.89(10) 1.06(0) 1.02(1) 1.01(2) 1.01(1) 1.01(3)

BIC
CL 1(0) 1(9) 1(9) 1(6) 1(7) 1(7)
MMHC 0.88(10) 1.07(1) 1.02(1) 1.02(4) 1.01(3) 1.01(3)

KL
CL 1(0) 1(10) 1(9) 1(7) 1(9) 1(9)
MMHC 1.72(10) 0.82(0) 0.96(1) 0.96(2) 0.97(0) 0.96(0)

SHD
CL 1(7) 1(9) 1(7) 1(7) 1(8) 1(6)
MMHC 1.06(3) 1.26(1) 1.29(3) 1.07(2) 1.22(1) 1.24(3)

Each number is an average normalized scores, i.e., the average of the ratios between
the raw scores and the corresponding scores of CL (the ratios are averaged over 10
networks and 5 runs with randomly sampled training datasets on each network).
For BDeu, BIC and SHD, smaller ratios indicate better learning results; for KL,
larger numbers indicate better learning results. Each number in parentheses indi-
cates the number of winning networks among the 10 networks, i.e., on how many
networks the algorithm produced better results than its competitor. The number
of draws (networks with equal scores) are not counted.

We find that it is mainly because the penalty term (Equation 2.5) becomes too large when

SS is very small, which drives the learner to produce a network with few edges. For example,

on the Andes network with SS = 100, the learned network contains only around 50 edges while

the number of edges in the true network is 338.

Since SHD is one of the most widely used evaluation metrics for Bayesian network structure

learning, we further investigate the SHD scores of the two algorithms under different settings.

Figure 2.2 plots the SHD averaged over five runs on the Andes, Hailfinder, Hepar2 and Win95pts

networks. It again shows that CL outperforms MMHC in almost all the cases.

With respect to running-time, our algorithm is in general slower than MMHC, on average

taking 2.7 times as much time. One reason is that our algorithm has to perform hill climbing

for multiple times, once at each stage, and the number of stages is proportional to the number

of variables. Another reason is that our scoring function takes more time to compute: we

have to compute a separate score for each data segment, which becomes slow when the data

is partitioned into too many segments. The number of segments is determined by the number

www.manaraa.com

33

100 500 1000 5000 10000 50000
0

50

100

150

200

250

300

350

Sample Size (SS)

S
tr

uc
tu

ra
l H

am
m

in
g

D
is

ta
nc

e
(S

H
D

)

Average SHD Results − Andes − Over 6 Sample Sizes
Error Bars = +/− Std.Dev.

MMHC

CL

100 500 1000 5000 10000 50000
0

10

20

30

40

50

60

70

Sample Size (SS)

S
tr

uc
tu

ra
l H

am
m

in
g

D
is

ta
nc

e
(S

H
D

)

Average SHD Results − Hailfinder − Over 6 Sample Sizes
Error Bars = +/− Std.Dev.

MMHC

CL

100 500 1000 5000 10000 50000
0

20

40

60

80

100

120

140

Sample Size (SS)

S
tr

uc
tu

ra
l H

am
m

in
g

D
is

ta
nc

e
(S

H
D

)

Average SHD Results − Hepar2 − Over 6 Sample Sizes
Error Bars = +/− Std.Dev.

MMHC

CL

100 500 1000 5000 10000 50000
0

50

100

150

Sample Size (SS)

S
tr

uc
tu

ra
l H

am
m

in
g

D
is

ta
nc

e
(S

H
D

)

Average SHD Results − Win95pts − Over 6 Sample Sizes
Error Bars = +/− Std.Dev.

MMHC

CL

Figure 2.2: Comparison of the average SHD on the Andes, Hailfinder, Hepar2 and between CL and
MMHC.

of variables as well as the cardinality of each variable. Our experiments show that the average

cardinality of variables has a larger impact to the running time of our algorithm than the number

of variables. With SS = 5000, the Andes network (223 variables with average cardinality of

2) takes only a few minutes for our algorithm to run, while the Mildew network (35 variables

with average cardinality of 17.6) takes a few hours. To verify that the good performance of

our algorithm does not come from the extra running time, we ran TABU search2 of Bayesian

network structures on each dataset with the same amount of time as used by our algorithm

and found that our algorithm still has significantly better performance.

2TABU search augments greedy hill-climbing by allowing worsening moves and using a tabu list to keep track
of and avoid recently visited solutions.

www.manaraa.com

34

2.5.1.4 Analysis of Step Size

The step size defined in Section 2.3.2 is the number of variables added in each stage. As

described earlier, we ran CL with different step sizes as well as hill-climbing without curriculum

and picked the final Bayesian network with the best BDeu Score. Here we analyze the frequency

of each step size leading to the best score and show results.

Table 2.3 shows detailed statistics of the winning step size, which is the step size that gives

rise to the best score. It can be seen that only on a small fraction (54 out of 300) of the datasets

did hill climbing with no curriculum produce the best score, implying that CL indeed helps to

find the better Bayesian network structures.

Table 2.3: Frequency of the winning step size

Step Size (t)

Network No CL 1 2 3

alarm 1 18 9 2
asia 5 21 2 2
insurance 8 7 11 4
child 3 17 6 4
sachs 8 12 6 4
water 7 11 7 5
hepar2 5 8 7 10
win95pts 1 15 5 9
hailfinder 16 14 0 0
andes 0 13 10 7

total 54 136 63 47

ratio 18.00% 45.00% 21.00% 16.00%

Each row shows, for a given Bayesian network, the number of times the corresponding step size produces
the best score. Ratio is the percentage of the 10×5×6 = 300 datasets (number of the Bayesian networks
times number of datasets times number of the sample sizes) on which CL of a specific step size (or without
curriculum, No CL) produces the best score.

2.5.1.5 Theory Verification

In section 2.4 we have proved that each intermediate target Bayesian network in our cur-

riculum is closer to the subsequent target Bayesian networks than any of its predecessors. Here

we would like to empirically demonstrate that the learner is indeed guided by these intermedi-

ate target Bayesian networks to produce intermediate learning results that become increasingly

www.manaraa.com

35

0 2 4 6 8 10 12 14 16 18 20
0

100

200

300

400

500

600

700

Stage

S
tr

u
ct

u
ra

l
H

am
m

in
g

 D
is

ta
n

ce
 (

S
H

D
)

SHD Results − Alarm − In Each Stage
SS = 5000 And Step Size t = 2

0 2 4 6 8 10 12 14
0

100

200

300

400

500

600

700

Stage

S
tr

u
ct

u
ra

l
H

am
m

in
g

 D
is

ta
n

ce
 (

S
H

D
)

SHD Results − Hailfinder − In Each Stage
SS = 5000 And Step Size t = 1

Figure 2.3: Changes of SHD from the target Bayesian network during curriculum learning with SS =
5000 on the Alarm and Hailfinder networks.

closer to the target Bayesian network with more curriculum stages. Note that while at stage i

of the curriculum we learn a subnet over the selected variables X(i), this subnet is conditioned

on fixed values of the rest of the variables X′(i) = X\X(i). Hence we can view the intermediate

learning result at stage i as a Bayesian network over all the variables consisting of three parts:

(a) the learned subnet over X(i); (b) a fully connected subnet over X′(i); (c) a fully connected

bipartite network between X(i) and X′(i). In order to correctly measure the distances between

the intermediate learning results and the target Bayesian network, we first randomly generated

a fully connected Bayesian network over all the variables, and then at each stage i we replaced

the local structure over X(i) with the subnet that we have learned and adjusted the direction

of the edges between X(i) and X′(i) to guarantee no directed cycles would be introduced. Fig-

ure 2.3 plots the SHD between the intermediate learning result at each stage and the target

Bayesian network on two different networks. It can be seen that the intermediate learning

results indeed become closer to the learning target with more curriculum stages.

2.5.2 Experiments on Classification

To further explore the advantages of CL, we evaluated it by its performance in real appli-

cations of Bayesian networks. Specifically, since Bayesian networks can be used as a classifier,

we compared the classification performance of the Bayesian networks learned from CL and

MMHC.

www.manaraa.com

36

Letting c? denote the predictive value of the class variable C given the instance x of X,

classification using Bayesian network in our experiments is given by

c? = arg max
c
P (C = c|x) = arg max

c
P (C = c,x), (2.11)

where Bayesian network is learned over the variable set X ∪ C.

2.5.2.1 Experimental Setup

We performed classification experiments on 28 datasets which were obtained from the

KEEL-dataset repository (Alcalá et al.,). The statistics of these datasets are shown in Table

2.4. We randomly sampled three fifths of the dataset as the training set and used the rest as

the test set. Since our algorithm currently does not deal with continuous variables, we used the

discretization method proposed by (Irani, 1993) and its implementation in Weka (Hall et al.,

2009) to discretize continuous variables. In learning Bayesian network structures, we kept the

settings of CL and MMHC same as that described at the beginning of Section 2.5 and used

add-1 smoothing for unseen patterns when computing CPDs.

Two metrics are used to measure the classification accuracy: predictive accuracy (ACC)

and conditional log likelihood (CLL) of the correct class given x. Note that there are cases in

which ACCs given by two different Bayesian networks are the same. Therefore, we introduce

CLL that measures the confidence level of the correct class, which is more sensitive to the

difference in the Bayesian networks. Given the test set DT , we define

CLL(DT) =
1

|DT |
∑
x∈DT

logP (Cx|x), (2.12)

where Cx is the class to which x corresponds.

We also included the Naive Bayesian (NB) classifier as the baseline. NB can be seen as the

special case of Bayesian network which has a fixed structure that takes the class variable C

as the parent of all the other variables X with no additional edges between X . We take the

ratios between the raw scores of CL and MMHC and the corresponding scores of NB averaged

over 28 datasets as the reported results.

www.manaraa.com

37

Table 2.4: Datasets used in classification experiments.

Num. Num. Num.training
Dataset vars classes samples

abalone 8 28 2504
adult 14 2 27133
banana 2 2 3180
chess 36 2 1917
connect-4 42 3 40534
fars 29 8 60580
kddcup 41 23 296412
kr-vs-k 6 18 16833
magic 10 2 11412
titanic 3 2 1320
mushroom 22 2 3386
nursery 8 5 7776
phoneme 5 2 3242
ring 20 2 4440
segment 19 7 1386
spambase 57 2 2758
splice 60 3 1914
twonorm 20 2 4440
winequality-white 11 11 2938
balance 4 3 375
car 6 4 1036
flare 11 6 639
led7digit 7 10 300
pima 8 2 460
tic-tac-toe 9 2 574
wdbc 30 2 341
winequality-red 11 11 959
yeast 8 10 890

www.manaraa.com

38

2.5.2.2 Results

Table 2.5 gives the comparisons between CL and MMHC with respect to classification per-

formance. It can be seen that CL and MMHC show nearly the same classification performance

with respect to ACC, and the number of winning datasets of CL and that of MMHC are

similar. We conducted the Student’s t-test with significance level α = 5% and hypothesized-

mean-difference set to 0 to determine if this difference is significant, and the result showed this

difference was not statistically significant. As for CLL, the Student’s t-test with significance

level α = 5% and hypothesized-mean-difference set to 0.02 showed that the classification per-

formance of CL was significantly better than that of MMHC on average. However, the number

of winning datasets of CL is close to that of MMHC.

Table 2.5: Classification results on two metrics

Metrics NB CL MMHC

ACC 1 1.033(8) 1.034(5)
CLL 1 0.755(7) 0.772(9)

For ACC, larger ratios indicate better classification performance. For CLL, since the raw scores are non-
positive, smaller ratios indicate better classification performance. In the parentheses we counted the
number of winning datasets among the 28 datasets. i.e., on how many datasets CL (MMHC) produced
better results than MMHC (CL), likewise, draws are not counted.

2.6 Discussion

At each curriculum stage, we learn a network over a subset of variables X(i) conditioned on

fixed values of the rest of the variables X′(i). An obvious alternative is to learn a network over

X(i) while ignoring X′(i). In the ideal case, the subnet learned by this approach would have

exactly one type of discrepancy from the true Bayesian network: it would contain extra edges

between variables in X(i) that cannot be d-separated in the true Bayesian network without

fixing certain variables in X′(i). In this alternative approach, the scoring function of the subnet

can be computed much faster than in our original algorithm. This is because we no longer have

to partition the data based on the values of X′(i) and hence only need to compute a single score

over all the data samples. However, the theoretical guarantees given in Theorem 2.1 and 2.2

www.manaraa.com

39

no longer hold with this alternative approach and counter-examples can be shown to exist. In

addition, our experiments showed that this approach resulted in worse overall learning accuracy

than our original algorithm.

2.7 Conclusion

In this chapter, we proposed a novel heuristic algorithm for Bayesian network structure

learning. Our algorithm takes advantage of the idea of curriculum learning and learns the

Bayesian network structure by stages. At each stage a subnet is learned over a selected subset

of the random variables conditioned on fixed values of the rest of the variables. The selected

subset grows with stages and eventually includes all the variables. We designed a new scoring

function for curriculum learning that tailors the standard Bayesian scoring function to utilize

all the training data and to alleviate overfitting. We constructed an incremental curriculum

based on mutual information between variables. We also prove theoretically that our approach

to learning Bayesian networks satisfies the desired property of curriculum learning that each

intermediate target should be closer to the subsequent targets than any of its predecessors in

the sequence based on both a structural and a distribution distance measures. The experi-

mental results showed that not only did our algorithm outperform the state-of-the-art MMHC

algorithm in recovering Bayesian network structures, but it also showed better classification

performance when the learned Bayesian networks are used as classifiers.

www.manaraa.com

40

CHAPTER 3. FINDING THE K-BEST EQUIVALENCE CLASSES FOR

MODEL AVERAGING

In chapter 2, we discussed how we learn a good Bayesian network from the data and then use

this single model for classification and inference. In some situations, learning a single optimal

DAG is not sufficient - a single DAG is subject to noise and other idiosyncrasies in the data.

As such, a data analyst would want to be aware of other likely DAGs. Hence, a number of

algorithms have been proposed to enumerate the k-best DAGs from a complete dataset (Tian

et al., 2010; Bartlett and Cussens, 2013).

There is a fundamental inefficiency in enumerating the k-best DAGs, namely that any

given DAG may be Markov equivalent to many other DAGs, which are all equally expressive in

terms of representing probability distributions. Thus, by enumerating DAGs, one may spend

a significant amount of effort in enumerating redundant Bayesian networks.

In this chapter, we develop an algorithm called kBestEC to directly enumerate the k-best

equivalence classes (ECs) of Bayesian networks. We show that our algorithm is significantly

more efficient than the previous algorithm that directly finds the k-best DAGs (Tian et al.,

2010). Moreover, we demonstrate our algorithm on the tasks of Bayesian model averaging

(BMA) and causal structure discovery.

3.1 Preliminaries

In the problem of learning Bayesian networks from a data set D, we seek a DAG over the

set of nodes indexed by V = {1, ..., n} that best explains the data D, evaluated by some scoring

function, e.g., lnP (G,D). In this work, we assume decomposable score such that

score(G : D) =
∑

v∈V
scorev(Pa

G
v : D), (3.1)

www.manaraa.com

41

where score(G : D) will be written as score(G) for short in the following discussion. Next we

give a few of definitions and theorems that describe some additional semantics and properties

of Bayesian networks.

Definition 3.1. A v-structure in a DAG G is an ordered triple of nodes (u, v, w) such that G

contains the directed edges u→ v and w → v and u and w are not adjacent in G.

Theorem 3.1. (Verma and Pearl, 1990) Two DAGs G1 and G2 are equivalent if and only if

they have the same skeleton and the same v-structures.

Definition 3.2 (Score Equivalence). Let score(G) be some scoring function that is decompos-

able. We say that it satisfies score equivalence if for any two equivalent DAGs G1 and G2 we

have score(G1) = score(G2) for any data set D.

Score equivalence is the nature of several common scoring functions such as MDL, BDe and

BIC. As a result, the set of equivalent DAGs are indistinguishable by these scoring functions.

Thus, our goal is to find “a best”, instead of “the best”. However, finding a best DAG is NP-

hard (Chickering, 1996). Recently, a family of DP algorithms have been developed to find a

optimal DAG in timeO(n2n) and spaceO(2n) (Singh and Moore, 2005; Silander and Myllymäki,

2006). The central idea exploits the fact that a DAG must have a sink s. Considering any

s ∈ V , the best DAG over V with s as sink can be constructed by piecing together the best

DAG G∗V \{s} over V \ {s} and the best parent set Pa∗s ⊆ V \ {s} assuming G∗V \{s} is already

known. Then we choose the best sink s that optimizes this construction. Applying this idea to

all W ⊆ V results in a DP algorithm that finds the best DAG for all 2n possible W recursively.

Figure ?? gives an example of the DP algorithm operating on a four-variable problem.

Later, Tian et al. (2010) generalized the algorithm (we will call it kBestDAG algorithm)

to recursively find the k-best DAGs and proposed to make inference by averaging over these

DAGs. Instead of considering a single best DAG, their algorithm maintains a list of k-best

DAGs for each node set W ⊆ V . However, these k-best DAGs are redundant in the sense that

they coalesce into only a fraction k of ECs and from one DAG we can efficiently infer other

members in the same EC. Thus, it is desirable if we are able to directly find the k-best ECs.

In next section, we present such an algorithm.

www.manaraa.com

42

3.2 Finding the k-best Equivalence Classes of Bayesian Networks

3.2.1 Algorithm

The following definitions will be useful in the development of our algorithm.

Definition 3.3 (Score for sub-graphGW ,W ⊆ V). For any decomposable score, define score(GW) =∑
v∈W scorev(Pa

GW
v) for any DAG GW over any node set W ⊆ V , where PaGW

v is the parent

set of v in GW .

Definition 3.4 (Graph growth operator ⊕). For any GW , v ∈ V \ W , Pav ⊆ W , define

GW∪{v} = GW ⊕ Pav as an operation growing GW to GW∪{v} s.t. GW∪{v} contains all edges

in GW and the directed edges from Pav to v.

Lemma 3.1. For any decomposable score function that satisfies score equivalence, we have

score(GW) = score(G′W) if GW and G′W are equivalent over node set W ⊆ V .

The proof of Lemma 3.1 is given in the Appendix A.1. Lemma 3.1 says the score equivalence

actually holds for DAGs over any subset W ⊆ V . This property allows us to recursively

construct top equivalence classes over all W ⊆ V .

Now we outline the algorithm for finding the k-best equivalence classes given in Algo-

rithm 3.1. It has three logical steps:

1. Compute the family scores Scorev(Pav) for all n2n−1 (v, Pav) pairs (lines 1–3);

2. Find the k-best parent sets in candidate set C for all C ⊆ V \ {v} for all v ∈ V (lines

4–6);

3. Recursively find the k-best equivalence classes over all node sets W ⊆ V (in lexicographic

order) (lines 7–13).

The first two steps follow naturally from those steps in (Silander and Myllymäki, 2006)

and (Tian et al., 2010) and we will use their algorithms. Figure 3.1 gives an example of the

algorithm operating on a four-variable problem {X1, X2, X3, X4}. Figure 3.1a shows how to

recursively find the 2-best parent sets of the variable X4 in all candidate sets.

www.manaraa.com

43

Algorithm 3.1 Finding the k-best Equivalence Classes

1: for all v ∈ V do
2: Compute scorev(Pav) for all Pav ⊆ V \ {v}.
3: end for
4: for all v ∈ V do
5: Find the k-best parent sets {bestPav(C, i), i = 1, ..., k} in parent candidate set C for all

C ⊆ V \ {v} recursively.
6: end for
7: for all W ⊆ V in lexicographic order do
8: A priority queue bestDAGs(W) with size limit of k, initialized to ∅. The elements in

bestDAGs(W) is denoted by Gi
W , i ∈ {1, ..., k}.

9: for all s ∈W do
10: Find the k-best G1

W,s, ..., G
k
W,s with s as a sink from

{Gi
W\{s} ⊕ bestPas(W \ {s}, j) : i = 1, ..., k, j = 1, ..., k}.

11: For all i ∈ {1, ..., k}, insert Gi
W,s into queue bestDAGs(W) if score(Gi

W,s) >

min{score(Gi
W), i = 1, ..., k} and Gi

W,s is not equivalent to any DAG in bestDAGs(W).
12: end for
13: end for
14: return bestDAGs(V)

We will use the idea of DP to find the k-best equivalence classes recursively for all W ⊆ V ,

while the kBestDAG algorithm in (Tian et al., 2010) finds the k-best DAGs recursively. However

working in the equivalence class space requires more careful treatment. It is not immediately

clear that the idea of exploiting sink will work in the equivalence class space.

For a node set W ⊆ V , let ECiW , i ∈ {1, ..., k} denote the top k equivalence classes over W .

For each ECiW , we use a DAG overW , denoted asGiW , to represent the whole equivalence class.1

For each W ⊆ V , we keep track of k DAGs, G1
W , ..., G

k
W , each of them comes from one of the

top k equivalence classes. Now assume we have identified such k-best ECs G1
W\{s}, ..., G

k
W\{s}

for all s ∈W . Finding the k-best ECs G1
W , ..., G

k
W for W takes two sub-steps:

3a. For each s ∈W , identify the k-best ECs G1
W,s, ..., G

k
W,s over W with s as a sink (line 10

in Algorithm 3.1).

3b. LetG1
W , ..., G

k
W be the k-best nonequivalent DAGs among ∪s∈W {k-best ECsG1

W,s, ..., G
k
W,s

over W with s as a sink} (line 11 in Algorithm 3.1).

1An alternative way to represent a EC is called completed partially DAG (CPDAG), consisting of a directed
edge for every compelled edge and an undirected edge for every reversible edge in the EC (Chickering, 2002a).
We choose DAG over CPDAG because: (1) encoding a DAG is space more efficient than encoding a CPDAG,
which makes significant difference when we have to keep k2n networks in memory; (2) growing a DAG using ⊕
results in a valid DAG while growing CPDAG using ⊕ results in a PDAG which need be converted to a CPDAG
with extra effort.

www.manaraa.com

44

(a) Parent graph for X4 (b) Order graph

Figure 3.1: An illustrative example of the DP algorithm operating on a four-variable problem
({X1, X2, X3, X4}). (a) An illustrative example for recursively finding the 2-best parent sets of variable
X4 in all possible candidate sets. (b)The order graph that illustrates the dependence structure and
processing order of all subproblems in the DP algorithm.

In 3a, to find the k-best ECs G1
W,s, ..., G

k
W,s, let bestPas(C, j) denote the j-th best parent

set for node s in the set of candidate parents C. Define function valueW,s(i, j) by

valueW,s(i, j) = score(GiW\{s}) + scores(bestPas(W \ {s}, j)).

We can find the k-best scores among {valueW,s(i, j) : i, j ∈ {1, ..., k}} by performing a

best-first search with root node (1, 1) and children of (i, j) being (i + 1, j) and (i, j + 1), as

suggested by Tian et al. (2010). Let G1
W,s, ..., G

k
W,s denote the k DAGs GiW\{s} ⊕ bestPas(W \

{s}, j) corresponding to the k-best scores. Now do they represent the k-best ECs? In other

words, can some of these DAGs be equivalent to each other, or are there other DAGs having

better scores than these DAGs? One concern is that in constructing G1
W,s, ..., G

k
W,s we only use

one representative DAG GiW\{s} from its corresponding EC. Is it safe to ignore other DAGs

equivalent to GiW\{s}? The following theorem guarantees that G1
W,s, ..., G

k
W,s indeed represent

the k-best ECs.

Theorem 3.2. The k DAGs corresponding to the k-best scores output by the best-first search

represent the k-best ECs over W with s as a sink.

The proof of Theorem 3.2 is given in Appendix A.1.

www.manaraa.com

45

After 3a, we have the k-best ECs over W with s as a sink for each s ∈ W .2 In 3b,

we identify G1
W , ..., G

k
W as the k-best DAGs from ∪s∈W {k-best G1

W,s, ..., G
k
W,s over W with s

as a sink} that are mutually nonequivalent. For this purpose, we need explicitly check the

equivalence of two DAGs if they are constructed from distinct sink s, s′. We first compare the

scores. If the scores are not equal, two DAGs are nonequivalent. Otherwise, we need check

whether they are equivalent. The detailed algorithm for checking the equivalence of two DAGs

is in Appendix A.2.

Theorem 3.3. The k DAGs G1
V , ..., G

k
V output by Algorithm 3.1 represent the k-best ECs over

V .

Proof. For each W ⊆ V , {GW over W}= ∪s∈W {GW over W with s as a sink}, therefore the

k-best nonequivalent DAGs over W are the k-best among ∪s∈W {k-best ECs G1
W,s, ..., G

k
W,s over

W with s as a sink}. Thus, for each W ⊆ V , G1
W , ..., G

k
W obtained from Step 3b represent the

k-best ECs over W . By induction, G1
V , ..., G

k
V output from Algorithm 3.1 represent the k-best

ECs over V .

An example of kBestEC to find the two best ECs over four variables {X1, X2, X3, X4} is

given in Figure 3.2. The DAGs inside each blue node are two DAGs representing the two best

ECs over the corresponding subset W . Each blue node has an outgoing arc connected to a

white node inside which are the two best DAGs over W ∪{s} with s as sink. This corresponds

to line 10 in Algorithm 3.1. Each blue node has several incoming arcs from corresponding

white nodes. This process finds the two best DAGs over W ∪ {s} by merging the DAGs from

previous step. This corresponds to line 11 in Algorithm 3.1. Note that when there are several

equivalent DAGs, we keep one while discarding the others.

3.2.2 Characterization of Time and Space Complexity

Now we give a theoretical discussion on the run-time and space complexity of the algorithm.

Step 1 takes O(n2n−1) time and O(2n−1) space. Step 2 takes O(k log k(n − 1)2n−2) time and

2There may be less than k such DAGs for W when |W | is small, but the number reaches k very rapidly as
W grows.

www.manaraa.com

46

Figure 3.2: Finding the k-best ECs (k = 2) over {X1, X2, X3, X4} by DP.

O(k2n−1) space in the worst case. Doing a best-first search to find the k-best elements from

space {(i, j) : i, j ∈ {1, ..., k}} takes O(k log k) time. Checking the equivalence of two DAGs

has a worst-case run-time of O(|W |d2W), where dW is the maximum size of parents in GW

and G′W . Thus, the worst-case run-time for step 3 is
∑n
|W |=1

(
n
|W |
)
|W |(k log k + k|W |d2W) =

O(n2n−1k(log k+ nd2

2)), where d is the maximum size of the parents computed in Step 2.3 The

worst space complexity is O(k2n) since we have to memorize no more than k DAGs for each

W ⊆ V .4

For the same k, step 3 for finding the k-best ECs is O(log k+nd
2/2

log k+nd/2) times slower in the worst

case than step 3 in kBestDAG for finding the k-best DAGs. Thus, kBestEC has slightly larger

time complexity than kBestDAG. Both algorithms have the same space requirement.

3Checking whether two DAGs GW and G′W are the same has a run-time of O(|W |dW). Therefore the run-time
for kBestDAG algorithm is O(n2n−1k(log k + nd

2
)).

4We say worst space because for small W ’s, there may exist less than k equivalence classes.

www.manaraa.com

47

3.3 Bayesian Model Averaging Using the k-best Equivalence Classes

We have presented an algorithm to obtain the k-best DAGs G1
V , ..., G

k
V representing the

k-best equivalence classes EC1
V , ..., EC

k
V . One application of our algorithm is to compute the

posterior of hypothesis of interests with Bayesian model averaging (BMA). If the application is

to evaluate class-invariant structural features such as Markov blanket or to predict new obser-

vations, the problem can generally be formulated as computing the posterior of the hypothesis

h by

P̂ (h|D) =

∑k
i=1wiP (h|GiV , D)P (GiV , D)∑k

i=1wiP (GiV , D)
, (3.2)

where wi is a weight we assign to each equivalence class ECiV . For example, if we want to treat

each equivalence class as a single statistical model (Madigan et al., 1996; Castelo and Kocka,

2003), we simply set wi = 1. If we’d like model averaging over original DAG space, we set

wi = |ECiV |, i.e, the number of DAGs in equivalence class ECiV .

If the application is to evaluate structural features such as an arrow u→ v or a path u v

that are not necessarily class-invariant, we have to enumerate the DAGs in each equivalence

class in order to compute the posterior

P̂ (h|D) =

∑k
i=1 P (GiV , D)

∑
G∈ECi

V
P (h|G,D)∑k

i=1 |ECiV |P (GiV , D)
. (3.3)

Algorithm 3.2 sketches an algorithm to enumerate all DAGs in an equivalence class and to

compute |ECiV | in the mean time. Given a DAG GV , we first determine the set of reversible

edges, i.e., their directions vary among the equivalent DAGs (line 2). Chickering (1995) provided

a O(|EGV
|) algorithm to find all compelled edges, i.e, their directions are invariant among the

DAGs in an EC. We slightly modified this algorithm so that it outputs the set of reversible

edges REV in GV . All possible DAGs equivalent to GV can be enumerated by reversing all

possible edge combinations in REV . If the generated “DAG” passes the check of acyclicity

and v-structures, it is a DAG equivalent to GV . The overall algorithm takes O((|V |+ |EGV
|+

|EGV
|2)2|REV |) in the worst case. Note here we implemented a straightforward algorithm for

enumerating all DAGs in an EC. Its run-time is negligible compared with the time for finding

the k-best ECs due to the fact that the number of DAGs in an EC is pretty small.

www.manaraa.com

48

Algorithm 3.2 EnumEquivalentDAGs(GV)

1: list← {GV }
2: REV ← FindReversibleEdges(GV)
3: for each subset CE ⊆ REV do
4: Construct a new G′V by reversing edges CE in GV

5: if CheckAcyclicity(G′V)= true then
6: flag ←true
7: for each v participating in some edge of CE do
8: if CheckV Struc(v,GV , G

′
V) = false then

9: flag ←false and break
10: end if
11: end for
12: if flag = true then
13: list.add(G′V)
14: end if
15: end if
16: end for
17: return list

3.4 Experiments

We implemented Algorithm 3.1 in C++.5. To evaluate its performance, we consider the

problem of computing the posteriors for all n(n−1) possible directed edges using Equation 3.3

by enumerating all DAGs in each EC. We used BDe score (Heckerman and Chickering, 1995) for

scorei(Pai) with a uniform structure prior P (G) and equivalent sample size 1. We compare the

performances of our kBestEC algorithm with the kBestDAG algorithm, in terms of run-time,

memory usage and quality of approximation. For approximation quality, we define cumulative

posterior probability density of the set of DAGs in G used to perform model averaging by

∆ =
∑

G∈G
P (G|D) =

∑
G∈G P (G,D)

P (D)
. (3.4)

We used the algorithm from (Tian and He, 2009) to compute the exact P (D) value. Note

that ∆ ≤ 1 and the larger of ∆, the closer of the estimation to the full Bayesian model

averaging. In practice, it is often reasonable to make predictions using a collection of the

best models discarding other models that predict the data far less well, even though the large

amount of models with very small posteriors may contribute substantially to the sum such

that ∆ is much smaller than 1 (Madigan and Raftery, 1994). Therefore, we introduce another

measure for the quality of estimation. We define the relative ratio of the posterior probability

5kBestEC is available at http://www.cs.iastate.edu/~jtian/Software/AAAI-14-yetian/KBestEC.htm

http://www.cs.iastate.edu/~jtian/Software/AAAI-14-yetian/KBestEC.htm

www.manaraa.com

49

of the MAP structure GMAP over the posterior of the worst structure GMIN in the k-best ECs

or DAGs by

λ =
P (GMAP |D)

P (GMIN |D)
=
P (GMAP , D)

P (GMIN , D)
. (3.5)

Note that both ∆ and λ measures were used in (Tian et al., 2010).

3.4.1 kBestEC v.s. kBestDAG

We tested both algorithms on datasets from the UCI Machine Learning Repository as well

as several synthetic datasets. All experiments were performed on a desktop with 2.4 GHz

Intel Duo CPU and 4 GB of memory. The results are presented in Table 3.1. Besides k, ∆

and λ, we list the number of variables n, sample size m, combined run-time Tpn for finding

the k-best parent sets and finding the k-best ECs (or DAGs) (lines 4–14 in Algorithm 3.1),

combined run-time Te for enumerating DAGs (Algorithm 3.2) (0 for kBestDAG algorithm) and

computing the posteriors, overall run-time T , total number of DAGs stored in memory |GM |,

memory usage M (in MB), number of DAGs covered by the k-best ECs |Gk|, and the average

|DAG|
|EC| ratio |Gk|k . All run-times are measured in seconds.

Our first observation is that, for all datasets, the running time Te spent in enumerating all

DAGs in k ECs is insignificant compared to the time for finding the k-best parent sets and ECs

Tpn and the total time T . The total running time is dominated either by computing the local

scores or by finding the k-best parent sets and the k-best ECs.

For the same k, BMA over k-best ECs has significantly better approximation quality than

BMA over the k-best DAGs (see ∆ values). This is straightforward since k ECs cover more

than k DAGs and absorb more posterior probability density. |Gk| records the number of DAGs

covered by the k-best ECs. Further, we see that kBestEC did spend more time for the same

k as it requires extra overhead to respect equivalence. Both algorithms consume almost the

same memory, which is consistent with the theory. An interesting observation is that kBestEC

sometimes used slightly less memory than kBestDAG (see Asia k = 1000, k = 1e4, Tic k =

1000). This can be explained by comparing |GM |, the total number of DAGs stored in memory.

kBestEC has smaller |GM | than kBestDAG. This is because for small W ⊆ V , we usually have

www.manaraa.com

50

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T p
n,

kB
es

tE
C

(k
)/T

pn
,k

B
es

tD
A

G
(k

)

log2k

Asia
Tic

Syn-1
Syn-2
Vote

 1

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

0 1 2 3 4 5 6 7 8 9 10

T p
n,

kB
es

tD
A

G
(k

’)/
T p

n,
kB

es
tE

C
(k

)

log2k

Asia
Tic

Syn-1
Syn-2
Vote

 1

(b)

Figure 3.3: Comparison of kbestEC andkbestDAG on execution times. (a) Execution times of two
algorithms to find k-best DAGs or ECs; (b) Execution times of two algorithms to achieve the same ∆
values.

less than k distinct DAGs, and much less than k ECs to be stored. The effect is additive and in

some cases causes big saving in both memory and time. For example, in case of Asia k = 1e4,

|GM | is significantly smaller for kBestEC than that for kBestDAG, such that kBestEC (T = 539

seconds) even ran faster than kBestDAG (T = 896 seconds).

A systematic comparison on Tpn of two algorithms for the same k is presented in Figure 3.3a.

It plots the ratio
Tpn,kBestEC(k)
Tpn,kBestDAG(k) against log2 k for all five data sets. A red dashed horizontal line

is drawn for where the ratio is 1. All five curves peak between k = 5 and k = 10 and decrease

rapidly as k becomes larger. This is because the ratio
Tpn,kBestEC(k)
Tpn,kBestDAG(k) = O(log k+nd

2/2
log k+nd/2) decreases

as k increases. Further, due to the same reason given above, as k increases, the number of the

node sets W over which the number of distinct ECs is smaller than k increases. Because the

run-time for computing each node set W is quadratic in the actual number of DAGs obtained

for W \ {v}, kBestEC becomes more efficient.

Now we compare the two algorithms under the assumption that the same quality of approx-

imation is achieved, i.e., they find the same number of DAGs, and therefore achieving the same

∆ values. In order to achieve the same ∆ as using k-best ECs, we have to run kBestDAG for a

larger k′ = |Gk| (the number of DAGs in the k-best ECs). With the same ∆, we observed that

kBestDAG required significantly more time and memory. This is consistent with theoretical

prediction of time ratio O(k(log k+nd
2/2)

k′(log k′+nd/2)) and space ratio k
k′ . And for some ∆ that kBestEC

www.manaraa.com

51

T
ab

le
3.

1
:

P
er

fo
rm

a
n

ce
co

m
p

a
ri

so
n

b
et

w
ee

n
kB

es
tE

C
a
n

d
kB

es
tD

A
G

k
B
e
st
E
C

k
B
e
st
D
A
G

D
at

a
n

m
k

T
p
n

T
e

T
|G

M
|

M
∆

λ
|G

k
|

|G
k
|

k
T
p
n

T
e

T
|G

M
|

M
∆

λ
A

si
a

8
50

0
1

0.
00

8
0.

00
1

7
.1

7
25

6
0
.0

5
0
.0

1
1

1
3

3
0.

0
0
5

0
7.

1
1

2
5
6

0
.0

5
0
.0

0
3
6

1
3

0.
0
0
8

0
7.

1
2

7
5
0

0
.1

2
0
.0

1
1

1
10

0.
06

0.
01

7
.2

0
22

5
5

0
.3

5
0
.0

6
4

4
.5

4
3

4
.3

0.
0
2

0
.0

1
7
.1

3
2
2
8
3

0
.3

6
0
.0

2
2

2
.3

43
0.

1
0
.0

1
7
.2

2
8
5
0
2

1
.3

1
0
.0

6
4

4
.5

10
0

0.
65

0.
04

7
.8

1
16

9
8
1

2
.6

1
0
.2

2
5

1
7.

2
4
6
7

4
.6

7
0.

2
7

0
.0

2
7
.4

1
7
7
9
3

2
.7

4
0
.1

0
1

6
.9

46
7

3.
1

0
.0

7
1
0
.3

7
7
6
1
4

1
1
.9

0
.2

2
5

1
7.

2
10

00
11
.8

0.
4

19
.3

10
6
6
3
1

1
6
.5

0
.5

2
5

1
2
9

4
6
9
4

4
.6

9
1
0
.9

0
.1

3
1
8
.1

1
3
2
5
0
3

2
0
.4

0
.3

1
6

2
8.

2
46

94
2
0
9

0.
6
5

2
1
7

4
7
6
0
4
5

7
3
.6

0
.5

2
5

1
2
9

1
e+

4
52

8
3.

8
53

9
8
7
5
3
2
9

1
3
5

0
.8

0
5

1
6
0
2

4
4
8
6
4

4
.4

9
8
8
7

1.
2
8

8
9
6

9
6
9
5
0
3

1
5
0

0
.6

2
8

2
7
0

T
ic

10
95

8
1

0.
03

0.
01

7
.7

9
10

2
4

0
.1

6
0
.0

5
9

1
7

7
0.

0
4

0
.0

1
7
.8

1
1
0
2
4

0
.1

6
0
.0

0
8
4

1
7

0.
1

0
.0

1
7
.8

1
6
9
2
2

1
.0

6
0
.0

5
9

1
10

0.
43

0.
01

8
.1

6
97

7
7

1
.5

0
0
.5

6
3

1
6
7

6
.7

0.
0
6

0
.0

1
7
.9

9
8
2
6

1
.5

1
0
.0

8
4

1
67

1.
4
4

0
.0

1
9
.1

7
5
9
9
5
2

9
.1

7
0
.5

6
3

1
10

0
5.

18
0.

07
13
.1

8
6
2
1
3

1
3
.2

0
.7

5
9

1
0
0
5

6
7
3

6
.7

3
2.

4
0
.0

2
1
0
.3

8
7
9
3
6

1
3
.4

0
.6

9
4

3
.6

67
3

4
2
.6

0
.0

7
5
1

5
4
5
2
4
7

8
3
.3

0
.7

5
9

1
0
0
5

10
00

10
2

0.
73

11
1

6
7
7
8
6
9

1
0
4

0
.7

5
9

5
.1
e+

7
7
6
0
4

7.
6

8
5
.3

0
.2

9
3
.3

7
5
3
8
7
3

1
1
5

0
.7

5
9

2
.2
e+

4
76

04
4
2
2
6

0.
8

4
2
3
7

4
9
6
7
2
2
5

7
5
9

0
.7

5
9

5
.1
e+

7
S

y
n

-1
15

10
0

1
1.

2
0.

02
18
.2

3
2
7
6
8

5
.0

1
1
.6

9
e-

5
1

4
4

0.
8

0
.0

1
1
8
.2

3
2
7
6
8

5
.0

1
4
.2

3
e-

6
1

4
3.

0
0
.0

1
2
0

1
3
0
9
1
9

2
0

1
.6

9
e-

5
1

10
26
.2

0.
06

43
.2

32
6
6
9
6

4
9
.9

3
.3

4
e-

4
1
.9

1
1
4

1
1
.4

1
0
.4

0
.0

1
2
7
.5

3
2
6
8
0
1

4
9
.9

4
.1

4
e-

5
1
.1

10
0

49
7

0.
1

51
4

3
2
2
4
4
3
1

4
9
2

1
.6

5
e-

3
4
.4

1
0
8
4

1
0
.8

3
2
1

0.
0
2

3
3
8

3
2
3
0
9
0
6

4
9
3

3
.0

3
e-

4
1
.9

11
4

3
9
0

0.
0
2

4
0
7

3
6
8
1
5
9
4

5
6
2

3
.3

4
e-

4
1
.9

S
y
n

-2
15

20
0

1
0.

96
0.

04
24
.7

3
2
7
6
8

5
.0

1
1
.6

5
e-

3
1

1
3

1
3

0.
7
7

0
.0

1
2
4
.5

3
2
7
6
8

5
.0

1
1
.2

7
e-

4
1

10
26
.8

0.
3

50
.8

32
6
6
9
6

4
9
.9

0
.0

1
2
9

2
.5

1
8
5

1
8
.5

1
0
.3

0
.0

1
3
4
.0

3
2
6
8
0
1

4
9
.9

1
.2

7
e-

3
1

13
1
5
.2

0
.0

1
3
9
.0

4
2
4
7
4
2

6
4
.8

1
.6

5
e-

3
1

10
0

51
2

2.
28

53
8

3
2
2
4
4
3
1

4
9
2

0
.0

4
8
3

1
0.

3
1
8
0
8

1
8
.1

3
3
1

0.
0
1

3
5
5

3
2
3
0
9
0
6

4
9
3

0
.0

0
8
1

1
.9

18
5

8
1
1

0.
0
3

8
3
6

5
9
6
7
2
2
6

9
1
1

0
.0

1
2
9

2
.5

V
ot

e
17

43
5

1
6.

21
0.

09
17

2
1
3
1
0
7
2

2
0.

0
0
.0

1
2
5

1
3

3
3.

8
0
.0

1
1
7
2

1
3
1
0
7
2

2
0
.0

0
.0

0
4
2

1
3

1
0
.5

0
.0

1
1
7
7

3
9
3
1
8
0

6
0

0
.0

1
2
5

1
10

12
2

1
28

9
13

0
9
4
7
0

2
0
0

0.
0
8
7
1

2
.4

3
0

3
5
1

0.
0
1

2
1
8

1
3
0
9
6
0
6

2
0
0

0
.0

3
7
6

1
.3

30
2
7
0

0.
0
1

4
3
7

3
9
2
4
5
6
6

5
9
9

0
.0

8
7
1

2
.4

10
0

26
84

5.
34

28
65

13
0
3
1
5
7
0

1
9
8
8

0
.3

0
2

1
0.

8
3
1
8

3
.1

8
1
9
4
6

0.
0
2

2
1
5
0

1
3
0
4
1
2
2
6

1
9
9
0

0
.1

7
2

4
.3

www.manaraa.com

52

could easily achieve with the available resource, kBestDAG failed. In particular, for Syn-2

dataset, BMA over the top 100 ECs is equivalent to a BMA over the top 1808 DAGs. The

former used only 492 MB memory, while the latter requires about 9 GB by estimation. Thus,

kBestEC significantly outperformed kBestDAG in space and time usage to achieve the same

quality of approximation.

A systematic comparison on Tpn of two algorithms when they find the same number of

DAGs is presented in Figure 3.3b. It plots the ratio
Tpn,kBestDAG(k′)
Tpn,kBestEC(k) for k′ = |Gk|, against log2 k

for all five data sets. A red dashed horizontal line is drawn for where the ratio is 1. The figure

clearly shows that kBestEC is more efficient than kBestDAG in finding the same number of

DAGs.

3.4.2 Structure Discovery

One important application of our algorithm is in (causal) structural discovery. We randomly

generated several network structures of 15 variables and simulated datasets from them with

sample size m = 100, 200, 500 respectively. We estimated the posteriors of all 210 possible edges

by averaging over the corresponding k best ECs or DAGs (k = 1, 10, 100). For comparison, we

also computed the edge posteriors using the exact method by Tian and He (2009). We then

predicted the presence or absence of each edge based on its posterior (say, an edge u → v is

present if P̂ (u → v|D) ≥ 0.5). The predictions were compared with ground truth and ROC

curves were used to evaluate the predictive accuracy. Results are presented in Figure 3.4. It

shows the accuracy for model averaging over the k-best ECs is significantly better than that

over the k-best DAGs as expected.

Another observation concerns about the reliability of using MAP model for structural infer-

ence. We first examine the λ value (Table 3.1). For Tic data set, the top 10 ECs are all equally

probable. For data set Syn-1, the MAP equivalence class is only 1.9 times more probable than

the 10-th best equivalence class, and only 4.4 times more probable than the 100-th best equiv-

alence class. Similar results can be observed on Syn-2 and Vote data sets. This reflects that in

many cases there are a significant number of distinct models explaining the data equally well

and using MAP model for structure inference or causal reasoning is not reliable. Our algorithm

www.manaraa.com

53

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
po

si
tiv

e
ra

te

Comparison of ROC Curves (Syn−1, n=15, m=100)

Exact
k=1 EC
k=10 EC
k=100 EC
k=1 DAG
k=10 DAG
k=100 DAG

(a) n=15, m=100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
po

si
tiv

e
ra

te

Comparison of ROC Curves (Syn−2, n=15, m=200)

Exact
k=1 EC
k=10 EC
k=100 EC
k=1 DAG
k=10 DAG
k=100 DAG

(b) n=15, m=200

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
po

si
tiv

e
ra

te

Comparison of ROC Curves (Syn−3, n=15, m=500)

Exact
k=1 EC
k=10 EC
k=100 EC
k=1 DAG
k=10 DAG
k=100 DAG

(c) n=15, m=500

Figure 3.4: Comparison of ROC curves for edge discovery.

will be a handy tool in understanding model structures in this kind of situation. A detailed

comparison of the top 10 ECs for Tic data set is presented in Figure 3.5. It shows these 10

ECs agree only on one edge and disagree on other edges (even the skeleton). Further, most of

the edges have probability below 0.5, indicating the high uncertainty on the network structure.

3.5 Discussion

Both kBestDAG and kBestEC are based on the DP algorithm. Recently, alternative ap-

proaches to finding an optimal Bayesian network have been proposed and shown being com-

petitive or faster than the DP algorithm. These approaches include A* search (Yuan et al.,

www.manaraa.com

54

Figure 3.5: Structure discovery results on Tic data set. (a) The top 10 equally probable equivalence
classes for Tic-Tac-Toe Data set. Each equivalence class is represented by a CPDAG where reversible
edges are depicted as undirected edges, compelled edges are depicted as directed edges. (b) Network
structure averaging over all DAGs. (c) Network structure averaging over top 10 ECs. The numbers
besides the edges in (b) and (c) indicate the estimated posterior probabilities of edges. In these networks,
we only include the most probable edges, i.e., edges whose posterior probabilities are greater than 0.4.
We set this threshold such that the edges above this threshold do not form any directed cycles in the
structure.

www.manaraa.com

55

2011; Yuan and Malone, 2012; Malone and Yuan, 2012, 2013) and Integer Linear Programming

(ILP) (Jaakkola et al., 2010; Cussens, 2011; Bartlett and Cussens, 2013). The A* search based

algorithm URLearning formulates the learning problem as a shortest path finding problem and

employs A* search algorithm to explore the search space. A potential future work is to explore

the feasibility of generalizing the A* based algorithm to find the k-best DAGs or ECs. ILP

based algorithm GOBNILP casts the structure learning problem as a linear program and solves

it using the SCIP framework (Cussens, 2011). In such setting, it is possible to rule out spe-

cific DAGs with linear constraints. This allows GOBNILP to iteratively find the top k DAGs

in deccreasing order of score (Bartlett and Cussens, 2013). Thus, another future work is to

compare kBestDAG, kBestEC with GOBNILP in finding the k-best Bayesian networks.

3.6 Conclusion

In this chapter we developed an algorithm named kBestEC to find the k-best equivalence

classes of Bayesian networks. It is the first approach to our knowledge for finding the k-best

equivalence classes. We show that our algorithm is significantly more efficient than the previous

kBestDAG algorithm that directly finds the k-best DAGs (Tian et al., 2010).

We tested kBestEC on the task of BMA to compute the posterior probabilities of edge

features on several data sets from the UCI Machine Learning Repository as well as synthetic

data sets. Our experiments showed that kBestEC significantly outperformed the kBestDAG

algorithm in both time and space usages to achieve the same quality of approximation.

Our algorithm provides a useful tool for researchers interested in learning model structures

or discovering causal structures. For example, biologists are interested in recovering gene

regulation networks from data. Recovering the MAP network alone often does not give the

full picture. There may exist a number of equally probable DAGs (or equivalence classes) with

distinct structures when the amount of data is small relative to the size of the model. Our

algorithm should be a very useful tool for understanding model structures in these situations

by listing the most likely models and their relative likelihood.

www.manaraa.com

56

CHAPTER 4. PARALLEL EXACT BAYESIAN EDGE LEARNING

In the Bayesian approach for structure discovery, one computes the posterior probability of

a structural feature f by integrating over all possible DAGs G weighted by their correspond-

ing posterior probabilities P (G|D), i.e., P (f |D) =
∑

G f(G)P (G|D), where f is an indicator

function that f(G) = 1 if the feature is present in a DAG G and f(G) = 0 otherwise. Direct

enumeration is infeasible in practice as the number of DAGs grows super-exponentially with

the number of variables.

There are some cases where exact Bayesian learning is still tractable. Assuming an order-

modular prior over DAGs and bounded in-degree, a dynamic programming (DP) algorithm

proposed by Koivisto (2006a) can compute the posterior probabilities of any modular features,

e.g., directed edges, in O(n2n) time and O(2n) space. Although this DP algorithm reduces

the computation time from super-exponential to exponential, it is still insufficient because the

largest problems it can solve on a typical desktop computer with a few GBs of memory do not

exceed 25 variables. The memory usage is the bottleneck in practice.

In this chapter, we study how parallelism can be used to tackle the scalability problem

of exact Bayesian structure discovery and present a parallel algorithm capable of computing

the exact posterior probabilities of all possible edges with optimal parallel space efficiency and

nearly optimal parallel time efficiency. We demonstrate the capability of our algorithm on

datasets with up to 33 variables and its scalability on up to 2048 processors.

4.1 Introduction

Parallel computing aims to design systems and algorithms that use multiple processing

elements simultaneously to solve a problem. It allows us to overcome the time and space

www.manaraa.com

57

limitations by using supercomputers, which are usually equipped with thousands of processors

and several terabytes of memory. If the computation steps in solving a problem are independent,

the running time can be significantly reduced by parallelizing the execution of these independent

steps on multiple processors. Certainly, this acceleration has theoretical upper bound. A

widely used measure of the acceleration is speedup, defined as the ratio between the sequential

running time (on one processor) and the parallel running time on p processors. Then in theory,

speedup ≤ p. That is, one can’t achieve more than p times faster if p processors are used. The

speedup will often be less than p as the parallel algorithm is bound to have some overhead

in coordinating the actions of processors. Another measure of the performance of a parallel

algorithm is efficiency, defined as the ratio between the sequential running time and the product

of the number of processors used and the parallel running time. Efficiency measures how well

the processors are utilized by the algorithm. Similarly, efficiency ≤ 1. A parallel algorithm is

said to be efficient if it involves the same order of work as performed by the best sequential

algorithm. Most modern supercomputers implement a parallel model called the distributed

memory model1, where many processors are linked through high-speed connections and each

processor has local memory directly attached to it. This type of supercomputers is scalable

in terms of both the memory space and the number of processors. Thus, current research in

parallel computing mainly use the distributed memory model for designing parallel algorithms.

As we have discussed in chapter 1, several parallel algorithms have already been devel-

oped for solving the structure learning problem, i.e., finding an optimal Bayesian network. In

particular, Nikolova et al. (2009, 2013) described a parallel algorithm that can realize direct

parallelization of the sequential DP algorithm in Ott et al. (2004) with optimal parallel effi-

ciency. This algorithm is based on the observation that the subproblems constitute a lattice

equivalent to an n-dimensional (n-D) hypercube, which has been proved to be a very powerful

interconnection network topology used by most of modern parallel computer systems (Dally

and Towles, 2004; Ananth et al., 2003; Loh et al., 2005). In the lattice formed by the DP

subproblems, data exchange only happens between two adjacent nodes. In a hypercube inter-

1Another popular parallel model is the shared memory model, where a memory space is shared by all pro-
cessors. This type of systems is typically very expensive and not scalable in terms of the memory size and the
number of processors.

www.manaraa.com

58

connection network, the neighbors communicate with each other much more efficiently than

other pairs of nodes. By noting this, the parallel algorithm takes a direct mapping of the DP

steps to the nodes of a hypercube, thus is communication-efficient. Further, this hypercube

algorithm does not calculate redundant steps or scores. These two features render the imple-

mentation of the algorithm scalable on up to 2048 processors (Nikolova et al., 2013). Using

1024 processors with 512 MB memory per processor, they solved a problem with 30 variables

in 1.5 hours.

In contrast, there is very limited work on scaling up structure discovery. To our knowl-

edge, there is no parallel algorithm developed for computing the exact posterior probability of

structural features. Although there are some similarities between the sequential DP algorithms

for structure learning and structure discovery, they differ in some significant places. These

differences prohibit the direct adaption of the existing parallel algorithms for structure learning

to structure discovery. First, the DP algorithm for finding the optimal DAG involves only one

DP procedure. All relevant scores for a subproblem are computed in one DP step, therefore

can be computed on one processor. Thus, the mapping of subproblems to processors is very

straightforward. However, the DP algorithm proposed by Koivisto (2006a) for computing the

posterior probability of structural features involves several separate DP procedures, responsi-

ble for computing different scores. These DP procedures, though can be performed separately,

rely on the completion of one another. Thus, it is a challenge to effectively coordinate the

computations of these DP procedures in a parallel setup. Failure to do this may greatly harm

the parallel efficiency. Second, the DP algorithm for computing the posterior probability of

structural features involves two critical subtasks, each of which calls for a fast computation of a

zeta transform variant. These two zeta transform variants require efficient parallel processing.

To fill up the gap, we develop a parallel algorithm to compute the exact posterior probability

of substructures (e.g., edges) in Bayesian networks. Our algorithm realizes direct parallelization

of the DP algorithm in (Koivisto, 2006a) with nearly perfect load-balancing and optimal par-

allel time and space efficiency, i.e., the time and space complexity per processor are O(n2n−k)

respectively, for p number of processors, where k = log(p). Our parallel algorithm is an ex-

tension of Nikolova et al. (2009)’s hypercube algorithm to the structure discovery problem.

www.manaraa.com

59

However, because of the difficulties discussed previously, our work goes beyond that by a sig-

nificant margin. First, we adopt a delicate way to map the calculation of various scores to

the processors such that large amount of data exchange between non-neighboring processors is

avoided during the transition among the separate DP procedures. This manipulation signifi-

cantly reduces the time spent in communication. Second, we develop novel parallel algorithms

for two fast zeta transform variants. As zeta transforms are fundamental objects in several

several combinatorial problems such as graph coloring (Koivisto, 2006b) and Steiner tree (Ned-

erlof, 2009) and combinatorial tools like the fast subset convolution (Björklund et al., 2007),

the parallel algorithms developed here would also benefit the researches outside the context of

Bayesian networks.

The rest of this chapter is organized as follows. In section 4.2, we present some preliminar-

ies of exact structure discovery in Bayesian networks and briefly review Koivisto (2006a)’s DP

algorithm, upon which our parallel algorithm is based. In section 4.3, we present our parallel

algorithm for computing the posterior probability of structural features and conduct a theoret-

ical analysis on its run-time and space complexity. In section 4.4 , we empirically demonstrate

the capability of our algorithm on a Dell PowerEdge C8220 supercomputer. Discussions and

conclusions are presented in section 4.5.

4.2 Exact Bayesian Structure Discovery in Bayesian Networks

We first review the DP algorithm in (Koivisto and Sood, 2004) for computing the posteriors

of modular structural features.

4.2.1 Computing Posteriors of Structural Features

A structural feature, e.g., an edge, is conveniently represented by an indicator function f

such that f(G) is 1 if the feature is present in G and 0 otherwise. In Bayesian approach, we are

interested in computing the posterior probability P (f |D) of the feature, which can be obtained

by computing the joint probability P (f,D) by

P (f,D) =
∑
G

f(G)P (G,D). (4.1)

www.manaraa.com

60

Instead of directly summing over the super-exponential DAG space, Friedman and Koller

(2003) proposed to work on the order space, which was demonstrated more efficient and conve-

nient. Formally, an order ≺ is a linear order (L1, ..., Ln) on the index set V , where Li specifies

the predecessors of i in the order, i.e., Li = {j : j≺i}. We say that a DAG G = (G1, ..., Gn) is

consistent with an order ≺ if Gi⊆Li for all i. By introducing the random variable ≺, P (f,D)

can be computed alternatively by

P (f,D) =
∑
≺
P (≺)P (f,D|≺). (4.2)

Assume an order modular prior defined as follows: if G is consistent with ≺, then

P (≺, G) =

n∏
i=1

qi(Li)ρi(Gi), (4.3)

where each qi and ρi is some function from the subsets of V − {i} to the nonnegative reals.

We will also make the standard assumptions on global and local parameter independence, and

parameter modularity (Cooper and Herskovits, 1992). Further, in this paper, we consider only

modular features, i.e, f(G) =
∏n
i=1 fi(Gi), where each fi(Gi) is an indicator function with

values either 0 or 1. For example, an edge u → v can be represented by setting fv(Gv) = 1 if

and only if u ∈ Gv, and setting fi(Gi) = 1 for all i 6= v. In addition, we assume the number of

parents of each node is bounded by a constant d. With these assumptions, Koivisto and Sood

(2004) showed that Equation 4.2 can be factorized as

P (f,D) =
∑
≺

n∏
i=1

qi(Li)
∑

Gi: Gi⊆Li and |Gi|≤d

ρi(Gi)p(xi|xGi , Gi)fi(Gi), (4.4)

where p(xi|xGi , Gi) is the local marginal likelihood for variable i, measuring the local goodness

of Gi as the parents of i. For convenience, for each family (i, Gi), i ∈ V , Gi ⊆ V − {i}, we

define

Bi(Gi) ≡ ρi(Gi)p(xi|xGi , Gi)fi(Gi). (4.5)

Note that if we assume the bounded in-degree d, we only need to compute Bi(Gi) for

Gi ⊆ V − {i} with |Gi| ≤ d. Further, for all i ∈ V , S ⊆ V − {i}, define

Ai(S) ≡ qi(S)
∑

Gi: Gi⊆S and |Gi|≤d

Bi(Gi). (4.6)

www.manaraa.com

61

The sum on the right-hand side of Equation 4.6 is known as a variant of the zeta transform

of Bi, evaluated at S. Now Equation 4.4 can be neatly written as

P (f,D) =
∑
≺

n∏
i=1

Ai(Li). (4.7)

Koivisto and Sood (2004) showed that P (f,D) can be computed by defining a recursive

function F on all S ⊆ V ,

F (S) ≡
∑
i∈S

Ai(S − {i})F (S − {i}), (4.8)

with the base case F (∅) ≡ 1. Then P (f,D) = F (V).

With this definition, P (f,D) = F (V) can be computed efficiently with dynamic program-

ming. Then the posterior probability of the feature f is obtained by P (f |D) = P (f,D)/P (D),

where P (D) can be computed like P (f,D) by simply setting all features fi(Gi) = 1, i.e.

P (f = 1, D) = P (D).

Computing Bi(Gi) scores for all i ∈ V , |Gi| ≤ d takes O(nd+1) time.2 For any i ∈ V , Ai

scores can be computed in O(d2n) time with a technique called the fast truncated upward zeta

transform3 (Koivisto and Sood, 2004). The recursive computation of F (V) takes O(
∑n

i=0 i ·(
n
i

)
) = O(n2n) time. The total time for computing one feature (i.e., an edge) is therefore

O(nd+1 + nd2n + n2n) = O((d+ 1)n2n).

4.2.2 Computing Posterior Probabilities for All Edges

If the application is to compute the posteriors for all n(n − 1) directed edges, we can run

above algorithm separately for each edge. Then the time for computing all n(n − 1) directed

edges is O((d+ 1)n32n). Since the computations for different edges involve a large proportion

of overlapping elements, a forward-backward algorithm was provided in (Koivisto, 2006a) to

reduce the time to O(2(d+ 1)n2n). For all S ⊆ V , define a “backward function” recursively as

R(S) =
∑
i∈S

Ai(V − S)R(S − {i}), (4.9)

2 We assume the computation of p(xi|xGi , Gi) takes O(1) time here. However, it is usually proportional to
the sample size m.

3It is called Möbius transform in (Koivisto and Sood, 2004; Koivisto, 2006a), but zeta transform is actually
the correct term.

www.manaraa.com

62

with the base case R(∅) = 1. Then for any fixed node v ∈ V (the endpoint of an edge) and

u ∈ V − {v}, the joint distribution P (u→ v,D) can be computed by

P (u→ v,D) =
∑

Gv : u∈Gv⊆V−{v} and |Gv |≤d

Bv(Gv)Γv(Gv), (4.10)

where for all v ∈ V , Gv ⊆ V − {v}

Γv(Gv) ≡
∑

S:Gv⊆S⊆V−{v}

qv(S)F (S)R(V − {v} − S). (4.11)

The sum on the right-hand side of Equation 4.11 is another variant of the zeta transform.

Provided that Bi, Ai, F , R are precomputed with respect to f ≡ 1, for any endpoint node v,

Γv(Gv) can be computed in O(d2n) time for all Gv ⊆ V −{v}, |Gv| ≤ d with a technique called

fast downward zeta transform (Koivisto, 2006a). To evaluate Equation 4.10 for a different

u ∈ V − {v}, we only need to recompute the function Bv by changing only the function fv.

Thus, evaluating Equation 4.10 takes O(nd) time.

We then arrived at the following algorithm for computing the posteriors for all n(n − 1)

edges. Let the functions Bi, Ai, Γi, F and R be defined with respect to the trivial feature

f ≡ 1 (fi(Gi) = 1 for all i ∈ {1, ..., n} and Gi ⊆ V − {i}).

Algorithm 4.1 Compute posterior probabilities for all n(n− 1) edges by DP (Koivisto, 2006)

1: for all i ∈ V and S ⊆ V − {i} with |S| ≤ d: compute Bi(S).

2: for all i ∈ V and S ⊆ V − {i}: compute Ai(S).

3: for all S ⊆ V : compute F (S) recursively.

4: for all S ⊆ V : compute R(S) recursively.

5: for all v ∈ V do

6: for all Gv ⊆ V − {v} with |Gv| ≤ d: compute Γv(Gv).

7: for all u ∈ V − {v} do

8: Compute P (u→ v,D) =
∑

Gv : u∈Gv⊆V−{v} and |Gv |≤d
Bv(Gv)Γv(Gv)

9: Evaluate P (u→ v|D) = P (u→ v,D)/F (V).

10: end for

11: end for

Adding up the time for all steps, the total computation time for evaluating all n(n − 1)

edges is O(nd+1 + dn2n + n2n + n2n + nd+2 + dn2n) = O(2(d+ 1)n2n).

www.manaraa.com

63

4.3 Parallel Algorithm

We use the Algorithm 4.1 presented in section 4.2 as a base for parallelization. The com-

putation of A functions corresponds to a variant of zeta transform which are computationally

intensive. There is no known parallel algorithm for zeta transform (Rota, 1964). Here we

design a novel parallel algorithm for it.4

The recursive computations of functions F and R over node sets S ⊆ V are analogous

to DP techniques in the algorithm for finding optimal BN in (Ott et al., 2004). Thus, it is

possible to use the parallel techniques developed for the latter problem. In our algorithm,

we adapt Nikolova et al. (2009)’s hypercube algorithm and use it as sub-routines to compute

functions F and R. However, some difficulties prohibit the direct adaption. The computation

in Algorithm 4.1 consists of several consecutive procedures, each of which is responsible for

computing a particular function. The computations of these functions depend on one another.

For example, computing F and R need A’s being available. Note that all functions are evaluated

over 2n of subsets S ⊆ V . In the hypercube algorithm, these subsets are computed in different

processors, thus stored locally. Generally, processors need exchange their scores in order to

compute a new function. Thus, it is challenging to coordinate the computations of these

functions to reduce the number of messages sent between the processors, particularly between

those non-neighboring processors. In our algorithm, we adopt a delicate way to achieve this.

The computation of Γ functions corresponds to another variant of zeta transform for which

we again design a novel parallel algorithm.

Finally, we integrate these techniques into a parallel algorithm capable of computing the

posteriors P (u → v|D) for all n(n − 1) edges with nearly perfect load-balancing and optimal

parallel efficiency.

To facilitate presentation, in section 4.3.1, we first describe an ideal case, where 2n processors

are available. In this case, we can directly map the 2n of subsets S ⊆ V to an n-dimensional hy-

percube computing cluster. In section 4.3.2, we then generalize the mapping to a k-dimensional

hypercube with k < n.

4The B functions required for computing A functions are computed inside the algorithm for computing A
functions.

www.manaraa.com

64

4.3.1 n-D Hypercube Algorithm

In section 4.3.1.1, we first describe the parallel algorithms for computing functions F and

R as they explain why we base our parallel algorithm on the hypercube model. We postpone

the discussion of computing B, A scores to section 4.3.1.2.

4.3.1.1 Computing F (S) and R(S)

The DP algorithm for computing functions F can be visualized as operating on the lattice

L formed by the partial order “set inclusion” on the power set of V (see Figure 4.1). The lattice

L is a directed graph (V ′, E′), where V ′ = 2V and (T, S) ∈ E′ if T ⊂ S and |S| = |T |+ 1. The

lattice is naturally partitioned into levels, where level l (0 ≤ l ≤ n) contains all subsets of size l.

A node S at level l has l incoming edges from nodes S −{i} for each i ∈ S, and n− l outgoing

edges to nodes S∪{j} for each j /∈ S. By Equation 4.8, node S receives Ai(S−{i}) ·F (S−{i})

from each of its incoming edges and computes F (S) by summing over l such scores. Assuming

Aj(S) for all j /∈ S are precomputed and available at node S, node S will compute Aj(S) ·F (S)

for all j /∈ S then send the scores to corresponding nodes. For example, Aj(S) ·F (S) is sent to

node S ∪ {j} so that it can be used for computing F (S ∪ {j}). Each level in the lattice can be

computed concurrently, with data flowing from one level to the next.

If each node in L is mapped to a processor in a computer cluster, the undirected version of L

is equivalent to an n-dimensional (n-D) hypercube, a network topology used by most of modern

parallel computer systems (Dally and Towles, 2004; Ananth et al., 2003; Loh et al., 2005). We

encode a subset S by an n-bit string ω, where ω[i] = 1 if variable i ∈ S and ω[i] = 0 otherwise.

Accordingly, we can use ω to denote the id of the processor that the subset S is mapped to.

As lattice edges connect pairs of nodes whose n-bit string differ by one element, they naturally

correspond to hypercube edges (Figure 4.1). This suggests an obvious parallelization on an

n-D hypercube.

The n-D hypercube algorithm runs in n + 1 steps. Let µ(ω) denote the number of 1’s in

ω. Each processor is active in only one time step – processor ω is active in time step µ(ω). It

receives one Ai(S − {i}) · F (S − {i}) value from each of µ(ω) neighbors obtained by inverting

www.manaraa.com

65

Figure 4.1: A lattice for a domain of size 3.
The binary string labels on the right-hand side
of each node show the correspondence with a 3-
dimensional hypercube. Bi, Ai and function F
for each subset S are computed at corresponding
processor. The arrows show how the data flow
between subproblems.

Figure 4.2: Map the computation of function
R(S) to the n-D hypercube. The binary string
label on the right-hand side of each node denote
the id of the processor. The arrows show how the
data flow between subproblems.

one of its 1 bits to 0. It then computes its F (S) function, computes Aj(S) · F (S) for all j /∈ S

and sends them to its n − µ(ω) neighbors obtained by inverting one of its 0 bits to 1. The

run-time of step l is O(l + n− l) = O(n). The parallel run-time for computing all F scores is

O(n2) in total.

We can parallelize the computation of function R in the same manner. However, we have

assumed Aj(S) for all j /∈ S are available only at node S. To compute R(S), node S need

receive Ai(V − S) ·R(S −{i}) from its neighbors. However, Ai(V − S) are available at neither

node S − {i} nor node S, but node V − S. Further, it is not a good idea either to have

F (S) and R(S) at the same processor as each term of the summation in the computation of Γ

scores requires different F and R (see Equation 4.11). To reduce message passing, we take a

completely different mapping for computing R. The new mapping is illustrated in Figure 4.2.

Note that R(S) is computed at the processor where F (V − S) is computed and all Ai(V − S)

are available. Processor ω receives one R(S−{i}) from each of its n−µ(ω) neighbors obtained

by inverting one of its 0 bits to 1. It then computes R(S) by Equation 4.9 and sends it to all

www.manaraa.com

66

its µ(ω) neighbors obtained by inverting one of its 1 bits to 0. The processors in the hypercube

operate in a bottom-up manner, e.g., starting from processor 111 and ending at processor 000.

Similarly, the parallel run-time is O(n2).

4.3.1.2 Parallel Fast Zeta Transforms

In section 4.3.1.1, we have assumed Ai(S) for all i /∈ S are precomputed at node S. For any

i ∈ V , computing Ai(S) for any subset S ⊆ V −{i} requires the summation over all subsets of

S with size no more than d (see Equation 4.6). If processors in the hypercube compute their Ai

independently, the processor responsible for computing Ai(V −{i}) for all i ∈ V takes O(d2n−1)

time. This certainly nullifies our effort of improving time complexity by parallel algorithm. In

this section, we describe parallel algorithms with which all Ai (and Γv) scores can be computed

on the n-D hypercube cluster in O(n2) time.

First, we give definitions for two variants of the well-known zeta transform (Kennes, 1992).

Let V = {1, ..., n}. Let s : 2V → R be a mapping from the subsets of V onto the real numbers.

Let d ≤ |V | be a positive integer.

Definition 4.1 (Truncated Upward Zeta Transform). (Koivisto and Sood, 2004) A function

t : 2V → R is the truncated upward zeta transform of s if

t(T) =
∑

S⊆T :|S|≤d

s(S), for all T ⊆ V.

Definition 4.2 (Truncated Downward Zeta Transform). (Koivisto, 2006a) A function t : 2V →

R is the truncated downward zeta transform of s if

t(T) =
∑

S:T⊆S⊆V
s(S), for all T ⊆ V with |T | ≤ d.

It is easy to see that the function Ai for all i ∈ V can be viewed as a case of the truncated

upward zeta transform. Similarly, the function Γv(Gv) can be viewed as a case of the truncated

downward zeta transform.

Two techniques introduced in (Koivisto and Sood, 2004) and (Koivisto, 2006a) are able to

realize both transforms in O(d2n) time, respectively. Here, we present the parallel versions

of the two algorithms (see Algorithm 4.2 and Algorithm 4.3) that run on an n-D hypercube

www.manaraa.com

67

computer cluster. The serial versions of the algorithms are given in (Koivisto and Sood, 2004)

and (Koivisto, 2006a), respectively.

Algorithm 4.2 Parallel Truncated Upward Zeta Transform on n-D hypercube

Assumption: each subset S ⊆ V is encoded by an n-bit string ω, where ω[i] = 1 if variable i ∈ S and
ω[i] = 0 otherwise. Subset S is computed on processor with id ω.

1: On each , t0(S)← s(S) for |S| ≤ d and t0(S)← 0 otherwise.
2: for j ← 1 to n do
3: for each processor ω s.t. |S ∩ {j + 1, ..., n}| ≤ d do
4: tj(S)← 0
5: if |S ∩ {j, ..., n}| ≤ d then
6: tj(S)← tj−1(S)
7: end if
8: if j ∈ S then
9: Retrieve tj−1(S − {j}) from processor ω′ = ω ⊕ 2j−1.

10: tj(S)← tj(S) + tj−1(S − {j})
11: end if
12: end for
13: end for
14: return tn(S) on processor ω

Algorithm 4.3 Parallel Truncated Downward Zeta Transform on n-D hypercube

Assumption: each subset S ⊆ V is encoded by an n-bit string ω, where ω[i] = 1 if variable i ∈ S and
ω[i] = 0 otherwise. Subset S is computed on processor with id ω.

1: On each processor, t0(S)← s(S).
2: for j ← 1 to n do
3: for each processor ω s.t. |S ∩ {1, ..., j}| ≤ d do
4: tj(S)← tj−1(S)
5: if j /∈ S then
6: Retrieve tj−1(S ∪ {j}) from processor ω′ = ω ⊕ 2j−1.
7: tj(S)← tj(S) + tj−1(S ∪ {j})
8: end if
9: end for

10: end for
11: return tn(S) on processor ω

By our definition in section 4.3.1.1, a subset S is encoded by an n-bit string ω, where

ω[i] = 1 if variable i ∈ S and ω[i] = 0 otherwise. In an n-D hypercube, ω is also used to denote

the id of a processor. We can take this natural mapping so that each processor ω is responsible

for the corresponding subset S. This forms the basic idea of the two parallel algorithms.

Algorithm 4.2 runs for n + 1 iterations. In each iteration, all 2n processors operate on

their S ⊆ V concurrently (lines 3 to 12). In iteration j, before the computation starts, each

processor ω with ω[j] = 0 sends its tj−1(S) to its neighbor ω′ obtained by inverting its ω[j] to

www.manaraa.com

68

(a) j = 0 (b) j = 1

(c) j = 2 (d) j = 3

Figure 4.3: An illustrative example of parallel truncated upward zeta transform on n-D hypercube.
In this case, n = 3, d = 2. The algorithm takes four iterations. Iterations 0, 1, 2 and 3 are show in
(a), (b), (c) and (d), respectively. The functions in dashed boxes are the messages sending between the
processors. In each iteration, the computed tj(S) is shown underneath each processor.

www.manaraa.com

69

(a) j = 0 (b) j = 1

(c) j = 2 (d) j = 3

Figure 4.4: An illustrative example of parallel truncated downward zeta transform on n-D hypercube.
In this case, n = 3, d = 2. The algorithm takes four iterations. Iterations 0, 1, 2 and 3 are show in
(a), (b), (c) and (d), respectively. The functions in dashed boxes are the messages sending between the
processors. In each iteration, the computed tj(S) is shown above each processor.

www.manaraa.com

70

1, i.e., ω′ = ω ⊕ 2j−1 (Line 3).5 The neighbor receiving this tj−1 will perform the addition on

line 10 in iteration j if necessary. Figure 4.3 illustrates an example of Algorithm 4.2 solving a

problem with n = 3 and d = 2.

In Algorithm 4.3, the mapping of the computation of S to n-D hypercube is the same as in

Algorithm 4.2. In iteration j, after the computation starts, each processor ω with ω[j] = 1 sends

its tj−1 to its neighbor ω′ obtained by inverting its ω[j] to 0, i.e., ω′ = ω⊕ 2j−1. The neighbor

receiving this tj−1 will perform the addition on line 7 in iteration j if necessary. Figure 4.4

illustrates an example of Algorithm 4.3 solving a problem with n = 3 and d = 2.

In each iteration, all S ⊆ V are computed concurrently on a n-D hypercube, the com-

putation times for both parallel algorithms being O(n). Further, in both algorithms, the

communications happen only between neighboring processors (two binary strings ω, ω′ differ in

only one bit). Thus, the two algorithms are communication-efficient.

We can use Algorithm 4.2 to compute Ai(S) for a given i ∈ V and all S ⊆ V −{i} by setting

s(·) = Bi(·) and then computing Ai(S) = qi(S) · t(S).6 Note that Bi(S) for any S ⊆ V − {i}

and |S| ≤ d has also been computed on processor corresponding to S since s(S) = Bi(S). To

compute Ai(S) for all i ∈ V , we run Algorithm 4.2 n times with each time switching to the

corresponding qi and Bi functions. Thus, Ai for all i ∈ V can be computed in |V |·O(n) = O(n2)

time. Each processor ω computes and keeps the corresponding Ai(S) for all i ∈ V , which is

the assumption we made in section 4.3.1.1. Thus, the mapping adopted by the two algorithms

is well suited for our algorithm as it avoids a large number of messages to be passed when the

computation transits to the next step.

We will use Algorithm 4.3 to compute Γv for a given v ∈ V . However, before applying the

algorithm, we shall first compute qv(S)F (S)R(V −{v}−S) on the processor corresponding to

S (see Equation 4.11). However, F (S) and R(V − {v} − S) are not on the same processor at

the time when we have computed functions F and R. Fortunately, they are on the processors

who are neighbors in the hypercube. Thus, the processor ω who has F (S) shall retrieve R(V −
5⊕ stands for the bitwise exclusive or (XOR) between two binary strings. 2j−1 stands for the binary string

of integer 2j−1.
6Ai(S) are defined for all S ⊆ V − {i}, instead of S ⊆ V . However, the algorithm can still be deployed by

setting t(S) = 0 for all S ⊆ V s.t. i ∈ S.

www.manaraa.com

71

Figure 4.5: Retrieve R for computing Γv. The example shows the case in which Γv for v = 1 is
computed.

{v}−S) from its neighbor ω′ obtained by inverting its ω[v] to 1, i.e., ω′ = ω⊕2v−1 (see example

in Figure 4.5), and compute qv(S)F (S)R(V −{v}−S) before Algorithm 4.3 is run. Then with

Algorithm 4.3, computing Γv for any fixed v ∈ V takes O(n). The time for computing Γv(Gv)

for all v ∈ V and Gv ⊆ V − {v} and |Gv| ≤ d is therefore |V | ·O(n) = O(n2).

4.3.1.3 Computing P (u→ v|D)

With Bv(Gv) and Γv(Gv) computed, we can compute P (u → v,D) using Equation 4.10.

Noting that Bv(Gv) and Γv(Gv) for any Gv ⊆ V −{v} are on the same processor, each processor

first computes Bv(Gv) ·Γv(Gv) locally, then a MPI Reduce, a collective function in MPI library

is executed on the hypercube to compute the sum of Bv(Gv) · Γv(Gv) from all processors.

P (u → v|D) is then obtained by evaluating P (u → v,D)/F (V) at the processor with the

highest rank, i.e., all bits in its id are 1’s. A MPI Reduce operation on a n-D hypercube

requires O((τ + µm)n) time, where τ , µ, m are constants, specifying the latency, bandwidth

of the communication network, and the message size. Thus, computing P (u → v|D) for all

u, v ∈ V, u 6= v takes O((τ + µm)n3) time.

Adding up the time for each step, the time for evaluating all n(n − 1) edges is O(n3). As

the sequential run-time is O(2n(d+ 1)2n), the parallel efficiency is Θ(2(d+ 1)/n2).

www.manaraa.com

72

4.3.2 k-D Hypercube Algorithm

In section 4.3.1, we have described the development of our parallel algorithm on an n-D

hypercube. However, we usually expect the number of processors p � 2n. Let p = 2k be the

number of processors, where k < n. We assume that the processors can communicate as in a

k-D hypercube. The strategy is to decompose the n-D lattice into 2n−k k-D lattices and map

each k-D lattice to the p = 2k processors (k-D hypercube).

Following our previous definition, we use the binary string ω to denote the corresponding

hypercube node S. We number the positions of a binary string using 1, ..., n (from right-most

bit to left-most bit), and use ω[i, j] to denote the substring of ω between and including positions

i and j. We partition the n-D lattice into 2n−k k-D lattices based on the left n−k bits of node

id ’s. For a lattice node ω, ω[k + 1, n] specifies the k-D lattice it is part of and ω[1, k] specifies

the id of the processor it is assigned to. As an example, Figure 4.6 shows the decomposition

of an 3-D lattice to two 2-D lattices and the mapping to an 2-D hypercube computing cluster.

In this case, subsets {} and {3} are assigned to processor 00, {1} and {1, 3} are assigned to

processor 01, so on and so forth. Thus, each processor in a k-D hypercube is responsible for

computing relevant scores for 2n−k S subsets. This forms the basic idea of our k-D hypercube

algorithm.

Figure 4.6: Decompose a 3-D lattice into two 2-D lattices which are then mapped to an 2-D hypercube.
The 3-bit binary string inside the node represents the binary code of the corresponding subset S. The
2-bit binary string beside each node denotes the id of the processor in the 2-D hypercube.

In the following, we first develop k-D hypercube algorithms for the two zeta transform

www.manaraa.com

73

variants. We then present the k-D hypercube algorithms for computing F and R functions.

Finally we introduce the overall k-D hypercube algorithm for computing the edge posteriors.

4.3.2.1 Parallel Fast Zeta Transforms on k-D hypercube

In order to compute A and Γ functions on a k-D hypercube, we generalize Algorithms 4.2

and 4.3. We number the processors in the k-D hypercube computer cluster with a k-bit binary

string r such that two adjacent processors r, r′ differ in one bit. The basic idea is, instead of

computing the transform for only one subset S, each processor r is responsible for computing

2n−k subsets S such that r = ω[1, k]. We present the generalized algorithms for the two

transforms in Algorithm 4.4 and Algorithm 4.5, respectively.

Algorithm 4.4 Parallel Truncated Upward Zeta Transform on k-D hypercube

Assumption: 1 ≤ k ≤ n, each subset S ⊆ V is encoded by an n-bit binary string ω, where ω[i] = 1 if
variable i ∈ S and ω[i] = 0 otherwise. Each processor in the k-D hypercube is encoded by an k-bit
binary string r. Subset S is computed on processor r = ω[1, k].

1: On each processor r, t0(S)← s(S) for all |S| ≤ d s.t. r = ω[1, k] and t0(S)← 0 otherwise.
2: for j ← 1 to n do
3: for each S ⊆ V with |S ∩ {j + 1, ..., n}| ≤ d on each processor r do
4: tj(S)← 0
5: if |S ∩ {j, ..., n}| ≤ d then
6: tj(S)← tj−1(S)
7: end if
8: if j ∈ S then
9: if j ≤ k then

10: Retrieve tj−1(S − {j}) from processor r′ = r ⊕ 2j−1.
11: end if
12: tj(S)← tj(S) + tj−1(S − {j})
13: end if
14: end for
15: end for
16: return tn(S)

Figure 4.7 shows a running example of Algorithm 4.4 with n = 3, d = 2 and k = 2. In this

case, we have 8 subsets and each processor is computing two subsets. Another notable difference

from the example in Figure 4.3 is that in j-th iteration where j > k, tj−1(S−{j})’s are available

locally thus no message passing between processor is required. Similarly, Figure 4.8 shows a

running example of Algorithm 4.5 with n = 3, d = 2 and k = 2.

We now present two theorems that respectively characterize the run-time complexities of

the two algorithms.

www.manaraa.com

74

Algorithm 4.5 Parallel Truncated Downward Zeta Transform on k-D hypercube

Assumption: 1 ≤ k ≤ n, each subset S ⊆ V is encoded by an n-bit binary string ω, where ω[i] = 1 if
variable i ∈ S and ω[i] = 0 otherwise. Each processor in the k-D hypercube is encoded by an k-bit
binary string r. Subset S is computed on processor r = ω[1, k].

1: On each processor, t0(S)← s(S) for all S s.t. r = ω[1, k].
2: for j ← 1 to n do
3: for each S ⊆ V with |S ∩ {1, ..., j}| ≤ d on each processor r do
4: tj(S)← tj−1(S)
5: if j /∈ S then
6: if j ≤ k then
7: Retrieve tj−1(S ∪ {j}) from processor r′ = r ⊕ 2j−1.
8: end if
9: tj(S)← tj(S) + tj−1(S ∪ {j})

10: end if
11: end for
12: end for
13: return tn(S)

Theorem 4.1. Algorithm 4.4 computes the truncated upward zeta transform in time O((d +

1) · 2n−k + k(n− k)d) on k-D hypercube.

Proof. As it is specified, each processor r computes subsets S s.t. r = ω[1, k]. Algorithm 4.4

runs for n iterations. For the iterations j = n − d, ..., n, all S ⊆ V satisfy the condition on

line 3, thus each processor performs the computation on lines 4–13 for the corresponding 2n−k

subsets on it. The total computing time for these iterations is O((d+ 1)2n−k) = O(d2n−k).

For iterations j = 1, ..., n − d − 1, the processor r s.t. r[i] = 0 for all i = 1, .., k has the

largest number of subset S that satisfy the condition on line 3, thus computes lines 4–13 the

most frequently among all the processors. The computation time of the algorithm for these

iterations is up-bounded by its computation time. Thus, for iterations j = 1, ..., n− d− 1, we

only need to characterize this processor’s computation time, which is proportional to

k∑
j=1

d∑
r=0

(
n− k
r

)
+
n−d−1∑
j=k+1

2j−k
d∑
r=0

(
n− j
r

)
= k

d∑
r=0

(
n− k
r

)
+ 2−k

n−d−1∑
j=k+1

2j
d∑
r=0

(
n− j
r

)

≤ k
d∑
r=0

(
n− k
r

)
+ 2−k

n−d−1∑
j=k+1

2j(n− j)d ≤ k
d∑
r=0

(
n− k
r

)
+ 2−k

n−d−1∑
j=1

2j(n− j)d

≤ k
d∑
r=0

(
n− k
r

)
+ 2−k2n

∞∑
j=0

(1/2)jjd

(4.12)

www.manaraa.com

75

The first term k
d∑
r=0

(
n−k
r

)
= O(k(n − k)d). The second term 2−k2n

∞∑
j=0

(1/2)jjd = O(2n−k)

as the infinite sum converges to a finite limit for a fixed d. Thus, the time combined for all

iteration is O(k(n− k)d) +O(2n−k) +O(d2n−k) = O((d+ 1) · 2n−k + k(n− k)d).

Theorem 4.2. Algorithm 4.5 computes the truncated downward zeta transform in time O((4d+

4) · 2n−k) on k-D hypercube.

Proof. Each processor r computes subsets S s.t. r = ω[1, k]. In Algorithm 4.5, line 1 takes

O(2n−k) time. Lines 2–12 runs for n iterations. For the iterations j = 1, ..., d, all S ⊆ V satisfy

the condition on line 3, thus each processor performs the computation on line 4–10 for all 2n−k

subsets on it. Thus the total computation time for these iterations is O(d2n−k).

For iterations j = d+ 1, ..., n, the processor r s.t. r[i] = 0 for all i = 1, .., k enters the loop

3–11 more frequently than any other processors, thus requires the most computation time. The

running time of Algorithm 4.5 for these iterations is up-bounded by its running time, which is

proportional to

k+d∑
j=d+1

2n−k +
n∑

j=k+d+1

2n−j
d∑
r=0

(
j − k
r

)
= k2n−k + 2−k

n−k∑
i=d+1

2n−i
d∑
r=0

(
i

r

)

= k2n−k + 2−k
4d−1∑
i=d+1

2n−i
d∑
r=0

(
i

r

)
+ 2−k

n∑
i=4d

2n−i
d∑
r=0

(
i

r

)
− 2−k

n∑
i=n−k+1

2n−i
d∑
r=0

(
i

r

)

≤ k2n−k + 2−k
4d−1∑
i=d+1

2n + 2−k
n−k∑
i=4d

2n−i
d∑
r=0

(
i

r

)
− 2−k

n∑
i=n−k+1

2n−d
d∑
r=0

(
d

r

)

= k2n−k + (3d− 1)2n−k + 2−k
n−k∑
i=4d

2n−i
d∑
r=0

(
i

r

)
− 2−k

n∑
i=n−k+1

2n−d2d

= (k + 3d− 1)2n−k + 2−k
n∑

i=4d

2n−i
d∑
r=0

(
i

r

)
− k2n−k

≤ (3d− 1)2n−k + 5 · 2n−k

(4.13)

The upper bound 2−k
n∑

i=4d

2n−i
d∑
r=0

(
i
r

)
≤ 5 · 2n−k in last step is from Corollary 3 in

(Koivisto, 2006a). Thus, the run-time is O((4d+ 4) · 2n−k).

www.manaraa.com

76

(a) j = 0 (b) j = 1

(c) j = 2 (d) j = 3

Figure 4.7: An illustrative example of parallel truncated upward zeta transform on k-D hypercube.
In this case, n = 3, d = 2, k = 2. The algorithm takes four iterations. Iterations 0, 1, 2 and 3 are
show in (a), (b), (c) and (d), respectively. The functions in dashed boxes are the messages sending
between the processors. In each iteration, the computed tj(S)’s is shown under each processor. In (d),
j = 3 > k = 2, tj−1(S − {j})’s are available locally thus no message passing is needed.

www.manaraa.com

77

(a) j = 0 (b) j = 1

(c) j = 2 (d) j = 3

Figure 4.8: An illustrative example of parallel truncated downward zeta transform on k-D hypercube.
In this case, n = 3, d = 2, k = 2. The algorithm takes four iterations. Iterations 0, 1, 2 and 3 are
show in (a), (b), (c) and (d), respectively. The functions in dashed boxes are the messages sending
between the processors. In each iteration, the computed tj(S)’s is shown under each processor. In (d),
j = 3 > k = 2, tj−1(S ∪ {j})’s are available locally thus no message passing is needed.

www.manaraa.com

78

4.3.2.2 Computing F (S) and R(S) on k-D Hypercube

To compute function F , we partition the n-D DP lattice into 2n−k k-D hypercubes based

on the left n− k bits of node id ’s. For a lattice node ω, ω[k+ 1, n] specifies the k-D hypercube

it is part of and ω[1, k] specifies the processor it is assigned to. Using the strategy proposed

by Nikolova et al. (2009), we pipeline the execution of the k-D hypercubes to complete the

parallel execution in 2n−k + k time steps such that all processors are active except for the first

k and last k time steps during the buildup and finishing off of the pipeline. Specifically, let

each k-D hypercube denoted by an (n − k) bit string, which is the common prefix to the 2k

lattice/k-D hypercube nodes that are part of this k-D sub-hypercube. The k-D hypercubes

are processed in the increasing order of the number of 1’s in their bit string specifications, and

in lexicographic order within the group of hypercubes with the same number of 1’s. Formally,

we have the following rule: let Hi and Hj be two k-D hypercubes and let ωS and ωT be the

binary strings of two nodes S and T in the lattice that map to Hi and Hj , respectively. Then,

the computation of Hi is initiated before computation of Hj if and only if:

1. µ(ωS [k + 1, n]) < µ(ωT [k + 1, n]), or

2. µ(ωS [k+ 1, n]) = µ(ωT [k+ 1, n]) and ωS [k+ 1, n] is lexicographically smaller than ωT [k+

1, n].

Figure 4.9a illustrates a case of computing F (S) with n = 3 and k = 2. In this example, the

3-D F lattice is partitioned to two 2-D hypercubes H1 and H2. H1 is processed before H2 is

processed. One feature of the pipelining is that once a processor completes its computation in

one k-D hypercube, it transits to next k-D hypercube immediately without waiting for other

processors to complete their computations in current hypercube. In Figure 4.9a, for example,

once the processor 00 completes node {} and sends out data, it starts on node {3} even if

processors 01, 10, 01 are still working on their nodes in H1. This feature prevents processors

from excessive idling during the transitions between consecutive hypercubes.

The strategy to compute function R(S) is similar. The only difference is the mapping of

the subsets to processors. R(S) is assigned to the processor with id r = ¬ω[1, k] 7, i.e., R(S) is

7¬ω[1, k] denotes the bitwise complement of binary string ω[1, k].

www.manaraa.com

79

(a) Computing F (S) (b) Computing R(S)

Figure 4.9: Pipelining execution of hypercubes to compute F (S) and R(S). The example shows a case
with n = 3 and k = 2.

computed on the processor where F (V −S) is computed. In other words, processors operate in

the reverse order as that when they compute F (S). An example of computing a 3-D R lattice

on 2-D hypercube is shown in Figure 4.9b.

4.3.2.3 Overall Algorithm: ParaREBEL

With the k-D algorithms for the two transforms, Ai (and Bi) and Γv functions can be

computed efficiently. As mentioned, each processor with id r is responsible for computing

2n−k subsets S such that r = ω[1, k]. Note that before computing Γv, we need compute

qv(S)F (S)R(V − {v} − S), where F (S) and R(V − {v} − S) are not necessarily on the same

processor in the k-D hypercube. Fortunately, with our partition strategy, F (S) and R(V −

{v} − S) locate either on the same processor or on the neighboring processors in the k-D

hypercube. Specifically, when v ≤ k, processor r with r[v] = 0 need retrieve R(S) from its

neighbor r′ = r⊕ 2v−1; when v > k, F (S) and R(V − {v} − S) are on the same processor thus

no message passing is needed to compute qv(S)F (S)R(V − {v} − S).

Finally, to compute P (u → v,D) for any u, v ∈ S, u 6= v, each processor r first adds up

all local Bv(Gv)Γv(Gv) scores with ωGv [1, k] = r, then a MPI Reduce is launched on the k-D

www.manaraa.com

80

hypercube to obtain the sum. The posteriors P (u→ v|D) are evaluated as P (u→ v,D)/F (V)

on the processor r with r[i] = 1 for all i ∈ {1, ..., k}.

Algorithm 4.6 ParaREBEL computes the posterior probabilities of all n(n − 1) edges with
p = 2k processors.

Assumption: each subset S ⊆ V is encoded by an n-bit string ω, where ω[i] = 1 if variable i ∈ S and
ω[i] = 0 otherwise. Each processor in the k-D hypercube is encoded by an k-bit string r.

1: for each i ∈ V , compute Bi(S) and Ai(S) for all S ⊆ V − {i} by Algorithm 4.4. Each processor r
computes subsets S s.t. r = ω[1, k].

2: Compute F (S) for all S ⊆ V on k-D hypercube. Each processor r computes subsets S s.t. r = ω[1, k].
3: Compute R(S) for all S ⊆ V on k-D hypercube. Each processor r computes subsets S s.t. r =
¬ω[1, k].

4: for each v ∈ V do
5: if v ≤ k then
6: Each processor r with r[v] = 1 sends all its R scores to its neighbor r′ = r ⊕ 2v−1.
7: end if
8: Each processor r with r[v] = 0 computes qv(S)F (S)R(V − {v} − S) for all its S.
9: Compute Γv(Gv) for all Gv ⊆ V − {v} with |Gv| ≤ d by Algorithm 4.5.

10: for each u ∈ V − {v} do
11: Each processor r recomputes Bv(Gv) for all Gv with r = ωGv

[1, k],
then adds up all local Bv(Gv)Γv(Gv) scores with |Gv| ≤ d.

12: MPI Reduce is executed on the k-D hypercube to compute the sum of all
Bv(Gv)Γv(Gv), P (u→ v,D), obtained on processor r with r[i] = 1 for all i ∈ {1, ..., k}.

13: Processor r with r[i] = 1 for all i ∈ {1, ..., k} evaluates P (u→ v|D) = P (u→ v,D)/F (V).
14: end for
15: end for

The overall k-D hypercube algorithm, named as ParaREBEL8 (Parallel Rapid Exact Bayesian

Edge Learning), is outlined in Algorithm 4.6.

4.3.2.4 Time and Space Complexity

We characterize the running time of ParaREBEL under the assumption that the maximum

in-degree d is a constant.

For any fixed i ∈ V , computing Ai(Li) for all Li ⊆ V −{i} takes O((d+1) ·2n−k+k(n−k)d)

time (Theorem 4.1). Thus, line 1 takes |V | ·O((d+ 1) · 2n−k + k(n− k)d) = O((d+ 1)n2n−k +

kn(n− k)d) time to compute Bi and Ai scores for all i ∈ V .

Line 2 and line 3 take O(n(2n−k + k)) time each as we pipeline the execution of the k-D

hypercubes in 2n−k + k steps and each step costs O(n).

In line 9, for any v ∈ V , computing Γv scores takes O((4d+ 4) · 2n−k) time (Theorem 4.2).

8The serial algorithm in (Koivisto, 2006a) is called REBEL.

www.manaraa.com

81

Line 11 takes O(n
d

2k
) time as there are no more than O(n

d

2k
) Bv(S)Γv(S) scores on each processor

if bounded in-degree d is assumed. In line 12, MPI Reduce procedure takes O((τ +µm)k) time.

Thus, the time combined for Lines 4-15 is O((((τ + µm)k + nd

2k
)n + (4d + 4)2n−k) · n) =

O(kn2 + nd+2

2k
+ 4(d+ 1)n2n−k) = O(kn2 + 4(d+ 1)n2n−k).9

The total time for the overall algorithm is therefore O(5(d+ 1)n2n−k +kn(n−k)d+kn2) =

O(5(d+ 1)n2n−k + kn(n− k)d).10.

Furthermore, B, A, Γ, F , R scores are evenly distributed on the 2k processors. Therefore,

the storage per processor used by the parallel algorithm is O(n2n−k). Since the space require-

ment of the sequential algorithm is O(n2n), our parallel algorithm achieves the optimal space

efficiency.

In summary, we obtain the following results.

Theorem 4.3. Algorithm ParaREBEL runs in time O(5(d+ 1)n2n−k + kn(n− k)d) and space

O(n2n−k) per processor.

4.4 Experiments

In this section, we present the experiments for evaluating our ParaREBEL algorithm.

4.4.1 Implementation and Computing Environment

We implemented the proposed ParaREBEL algorithm11 in C++ and MPI and demonstrated

its scalability on TACC Stampede12, a Dell PowerEdge C8220 cluster. Each computing node

in the cluster consists of two Xeon Intel 8-Core E5-2680 processors (16 cores in all), sharing 32

GB memory. All experiments were run with one MPI process per core. To allow more memory

per process, only 8 cores in each node were recruited so that each process could use up to 4 GB

memory. The maximum number of nodes/cores allowed for a regular user on TACC Stampede

9O(kn2 + nd+2

2k
+ n2n−k) = O(kn2 + n2n−k) because nd+2

2k
is dominated by n2n−k.

10We normally have d ≥ 2, i.e., the up-bound of the in-degree is at least 2. In this case, kn(n− k)d dominates
kn2.

11ParaREBEL is available for download at http://www.cs.iastate.edu/~yetianc/software.html.
12http://www.tacc.utexas.edu/resources/hpc/stampede

http://www.cs.iastate.edu/~yetianc/software.html
http://www.tacc.utexas.edu/resources/hpc/stampede

www.manaraa.com

82

is 256/4096. To maintain 4 GB per core, we can only use up to 2048 cores. Thus, all the

following experiments were done on up to 2048 cores.

4.4.2 Running Time and Memory Usage

We first evaluated the time and space complexity of our algorithm. We compared our

implementation with REBEL13, a C++ implementation of the serial algorithm (Algorithm 4.1)

in (Koivisto, 2006a).

We generated a set of synthetic data sets with discrete random variables. Each dataset

contains 500 samples. For each data set, we ran the serial algorithm and our ParaREBEL

algorithm to compute the posterior probabilities for all n(n − 1) potential edges. We did two

tests: one with varying bounded in-degree d and fixed number of variables n, the other with

varying number of variables n and fixed bounded in-degree d. In both tests, the total running

times were recorded and speedup and efficiency were computed. In the second test, the memory

usages per processor were collected and the total memory usages were calculated.

In the first test, we fixed n = 25 and studied the performance of ParaREBEL algorithm with

respect to the bounded in-degree d (d = 2, 4, 6, 8). The run-times are presented in Table 4.1.

The corresponding speedups and efficiencies are illustrated in Figure 4.10. Generally, we ob-

served overall good scaling (see speedup plot in Figure 4.10) for all values of d. The speedup

and efficiency both improve when d increases from 2 to 4, but decline when d keeps increasing

from 4 through 6 to 8. From our theoretical analysis of running time , we have speedup =

2(d+1)n2n

5(d+1)n2n−k+kn(n−k)d = 2·2n

5·2n−k+
k(n−k)d

d+1

and efficiency= 2(d+1)n2n

5(d+1)n2n+kn(n−k)d2k = 2·2n

5·2n+ k(n−k)d

d+1
2k

.

Both formulas are not a monotonic function of d. when d is small, d + 1 in the denominator

of k(n−k)d
d+1 dominates thus both speedup and efficiency improve when d increases. When d is

large, k(n − k)d starts to dominate and the two measures decline when d increases. Thus,

our empirical result is consistent with our theoretical result. For d = 4, the efficiencies are

maintained above 0.53 with up to 2048 cores.14

In the second test, we fixed d = 4 and studied the performance of the algorithm with respect

13http://www.cs.helsinki.fi/u/mkhkoivi/REBEL
14Generally, parallel algorithms with efficiency≥ 0.5 are considered to be successfully parallelized.

http://www.cs.helsinki.fi/u/mkhkoivi/REBEL

www.manaraa.com

83

Table 4.1: Run-time for the test data with n = 25 with varying bounded in-degree d.

No.CPUs Run-time (seconds)
d = 2 d = 4 d = 6 d = 8

Serial 1319 2295 4308 7739
4 1284 1330 1500 2383
8 575 594 711 1304
16 327 338 417 764
32 139 146 181 466
64 59.9 64.2 102 268
128 26.6 29.4 55.6 153
256 11.7 13.8 31.3 86.8
512 5.2 6.8 18.2 48.5
1024 2.5 3.6 11.0 26.9
2048 1.5 2.1 6.7 14.8

 0

 500

 1000

 1500

 2000

32 256 512 1024 2048

S
pe

ed
up

No. CPUs

d=2
d=4
d=6
d=8

linear

 0

 0.2

 0.4

 0.6

 0.8

 1

32 256 512 1024 2048

E
ffi

ci
en

cy

No. CPUs

d=2
d=4
d=6
d=8

Figure 4.10: Speedup and efficiency for the test data set with n = 25 with varying bounded in-degree
d. The red diagonal line in speedup plot represents the linear or ideal speedup, i.e., the up-bound that
a parallel algorithm can achieve in theory.

to the number of variables (n = 21, 23, 25, 27, 29, 31, 33). We first compared the run-times. As

showed in Table 4.2, the run-times are reflective of the exponential dependence on n. Further,

we observed that the algorithm scaled much better when n becomes larger (see speedup and

efficiency plot in Figure 4.11). This is also supported by our theoretical result. With a minor

transform, our running time analysis suggests speedup = 2(d+1)
5(d+1)2−k+k(n−k)d2−n . When n is

large enough, speedup (and efficiency) is a increasing function of n. For n = 25, the parallel

algorithm maintains an efficiency of about 0.6 with up to 2048 cores. For n = 33, the problem

can only be solved on 1024 and 2048 cores due to memory constraint. We had a try on n = 34

using 2048 cores but were not able to solve it as it ran out of memory.

www.manaraa.com

84

Table 4.2: Run-time for the test data sets with n = 21, 23, 25, 27, 29, 31, 33 with fixed d = 4.

No.CPUs Run-time (seconds)
n = 21 n = 23 n = 25 n = 27 n = 29 n = 31 n = 33

Serial 96.5 492 2295 - - - -
4 44.1 252 1330 - - - -
8 17.2 94.2 594 - - - -
16 10.3 55.5 338 - - - -
32 5.0 25.5 146 682 - - -
64 2.7 11.9 64.2 385 2201 - -
128 1.6 5.8 29.4 167 864 -
256 0.97 3.2 13.8 73.5 389 2540 -
512 0.61 1.8 6.8 33.9 196 987 -
1024 0.4 1.1 3.6 15.9 87 488 2884
2048 0.27 0.7 2.1 7.8 39 215 1452

 0

 500

 1000

 1500

 2000

32 256 512 1024 2048

S
pe

ed
up

No. CPUs

n=21,d=4
n=23,d=4
n=25,d=4

linear

 0

 0.2

 0.4

 0.6

 0.8

 1

32 256 512 1024 2048

E
ffi

ci
en

cy

No. CPUs

n=21,d=4
n=23,d=4
n=25,d=4

Figure 4.11: Speedup and efficiency for the test data sets with n = 21, 23, 25. The red diagonal line
in speedup plot represents the linear or ideal speedup, i.e., the up-bound that a parallel algorithm can
achieve in theory.

One interesting observation is that for any fixed d and n, the parallel efficiency increases as

the No.CPUs increases, peaks at somewhere in between, then gradually decreases as No.CPUs

goes up to 2048 CPUs (see efficiency plot in Figure 4.11). Mathematically, this optimum can

be found by maximizing efficiency= 2(d+1)2n

5(d+1)2n+k(n−k)d2k , i.e., minimizing k(n − k)d2k over k.

Solving this optimization problem yields k∗ = n(ln 2 + 1)/(ln 2 + 1 + d) ≈ 1.7n/(d + 1.7).

Plugging in n = 25 and d = 4 yields k∗ = 7.5 ≈ 8, i.e., 2k
∗ ≈ 256 cores. Plugging in n = 23

and d = 4 yields k∗ = 6.8 ≈ 7, i.e., 2k
∗ ≈ 128 cores. All these results consist exactly with

the observation in Figure 4.11. This provides another piece of solid experimental evidence for

Theorem 4.3. Further, this optimum k∗ is proportional to n, i.e., the optimal efficiency will

www.manaraa.com

85

Table 4.3: Memory usage for the test data with n = 23, 25, 27, 29, 31, 33 with fixed d = 4. The term
outside the parentheses is the total memory usage measured in GB, the term inside the parentheses is
the memory usage per core measured in MB. The missing entries indicate the cases where the program
runs out of memory.

No.CPUs Memory Usage
n = 23 n = 25 n = 27 n = 29 n = 31 n = 33

4 1.88 (481) 8.00 (2049) - - - -
8 1.88 (240) 8.00 (1025) - - - -
16 1.88 (121) 8.01 (513) - - - -
32 2.17 (70) 8.30 (266) 34.32 (1098) - - -
64 2.49 (40) 8.62 (138) 34.64 (554) 144.68 (2315) - -
128 3.31 (27) 9.46 (76) 35.48 (284) 145.53 (1164) - -
256 4.93 (20) 11.06 (44) 37.09 (148) 147.07 (588) 606.13 (2425) -
512 8.40 (17) 14.73 (30) 40.76 (82) 150.87 (302) 615.03 (1230) -
1024 17.58 (18) 23.62 (24) 49.72 (50) 159.87 (160) 623.88 (624) 2520 (2520)
2048 41.08 (21) 47.32 (24) 72.97 (36) 183.69 (92) 647.27 (324) 2560 (1300)

be achieved by using larger number of cores when problem becomes larger. This suggests our

ParaREBEL algorithm scales very well with respect to the problem size n.

We then examined the actual memory usages with respect to the number of variables n and

the number of cores 2k in Table 4.3. For n = 23, the total memory usage remains the same

(1.88 GB) for 2k = 4, 8, 16 cores, but starts to increase as the number of cores increases from

16 to 2048. This increase is dramatic for the number of cores ranging from 256 to 2048, i.e,

the memory usage is doubled when the number of cores is doubled. This can be explained by

examining the memory usage per core. For 2k = 4, 8, 16, the memory usage per core decreases

by half when the number of cores is doubled. This is consistent with our theoretical analysis

that the space complexity is O(n2n−k) per core. When 2k ≥ 16, the reduction slows down

and the memory usage plateaus at about 20 MB per core. It is speculated that in addition to

the memory allocated for storing the B,A, F,R,Γ scores, each core requires extra 10 ∼ 20 MB

memory to store program execution related data in order to run the program. This overhead

is negligible when the memory usage per core is dominated by the scores but comes into play

otherwise. For n = 25, total memory usage stays at about 8 GB for 2k = 4 ∼ 64 and starts to

increase thereafter; for n = 27, total memory usage stays at about 35 GB for 2k = 32 ∼ 256

and starts to increase thereafter; for n = 29, 31, 33, the memory usage per core is dominated

by the scores, thus, the total memory usage stays roughly constant with respect to the number

www.manaraa.com

86

of cores examined. Further, it is easily observed that the memory usages (total memory usage

and memory usage per core) are reflective of the exponential dependence on n. Thus, the

observations on the memory usage are consistent with our analysis of the space complexity.

Moreover, the missing entries in the table are the cases where the program runs out of

memory. Thus, we concluded that it requires at least 4 GB memory per core if n − k > 23.

To solve a problem of n ≥ 34, we need 2048 cores with more than 4 GB memory per core or

4096 cores with more than 2 GB memory per core. However, these resources are unavailable

to a regular user on TACC Stampede. Further, we observed that the problem of n = 33 could

be solved on 1024 cores in less than one hour, and 2048 cores in less than half an hour. The

computation times are still far away from the practical limit. Thus, memory requirement is

still the bottleneck that determines the feasibility limit in practice.

4.4.3 Knowledge Discovery

Finally, we applied our algorithm to a biological dataset for discovering the regulatory

network responsible for controlling the expression of various genes involved in Saccharomyces

cerevisiae (yeast) pheromone response pathways (Hartemink, 2001). This data set consists

of 33 variables, of which 32 variables represent discretized levels of gene expression and an

additional binary variable represents the mating type of various haploid strains of yeast. A

total number of 320 observations are recorded. Bayesian network structure models for this

data set have been constructed by using model selection methods such as greedy hill climbing,

simulated annealing or by Bayesian model averaging over models selected during the simulated

annealing (Hartemink, 2001; Hartemink et al., 2002).

We used our ParaREBEL algorithm to compute the exact posterior probabilities of all 1056

potential edges. The total running time was 1542 seconds on 2048 cores. We then constructed

a network that consisted of (important) edges whose posteriors were greater than 0.1 (we set

this threshold such that the constructed network is a DAG). The network model consists of 60

edges and is illustrated in Figure 4.12. Nodes have been augmented with color information to

indicate the different groups of variables with known relationships in the literature. Edges are

formatted according to their posterior probabilities.

www.manaraa.com

87

Figure 4.12: Network model learned for the yeast pheromone response pathways data set. Nodes
have been augmented with color information to indicate the different groups of variables with known
relationships in the literature. Directed edges are formatted according to their posterior probabilities:
heavily weighted (posterior ≥ 0.9), solid (0.5 ≤ posterior < 0.9), and dashed (0.1 ≤ posterior < 0.5).

www.manaraa.com

88

Since the ground truth network is unknown, we cannot evaluate the accuracy of the model.

However, we observe a number of interesting properties. First, variables in the same group

(with the same color) tend to form a cluster (directly connected subgraph) in the network and

the intra-class edges are generally more probable than the inter-class edges. This demonstrates

that our algorithm is capable of recovering the (important) interactions in the yeast pheromone

response pathways. Second, the Mating Type variable is at the source of the network, and

contributes to the ability to predict the state of a large number of variables, which is to be

expected. Further, in (Hartemink, 2001), two types of models were learned, one obtained

using greedy or simulated annealing search without any domain constraint (see Figure 7-3 in

(Hartemink, 2001)), the other learned using the similar search approaches but with constraints

governing the inclusion and exclusion of edges which were derived from genomic analysis (see

Figure 7-4 in (Hartemink, 2001)). Interestingly, our network, which was constructed without

any domain constraints, is more like the model learned with the constraints. This suggests that

the network constructed with edge posteriors may achieve better modeling of the regulatory

network than the model learned using model selection methods. Future research could explore

additional data sets to confirm this observation.

4.5 Discussion and Conclusion

Exact Bayesian structure discovery in Bayesian networks requires exponential time and

space. In this chapter, we have presented a parallel algorithm capable of computing the exact

posterior probabilities for all n(n − 1) potential edges with optimal time and space efficiency.

To our knowledge, this is the first practical parallel algorithm for computing the exact posterior

probabilities of structural features in Bayesian networks. We demonstrated its capability on

datasets with up to 33 variables and its scalability on up to 2048 processors. To our knowledge,

33-variable network is the largest problem solved so far. We have also applied our algorithm to a

biological data set for discovering the (yeast) pheromone response pathways. This demonstrated

our algorithm in the task of knowledge discovery.

Our algorithm makes twofold algorithmic contributions. First, it achieves an efficient paral-

lelization of the base serial algorithm by presenting a delicate way to coordinate the computa-

www.manaraa.com

89

tions of correlated DP procedures such that large amount of data exchange is suppressed during

the transitions between these DP procedures. Second, it develops two parallel techniques for

computing two variants of well-known zeta transform. These features or ideas can potentially

be extended and applied in developing parallel algorithms for related problems. For example,

the algorithm in (Tian and He, 2009) involves similar steps and transforms. Further, as zeta

transforms are fundamental objects in combinatorics and algorithmics, the parallel techniques

developed here would also benefit the researches beyond the context of Bayesian networks

(Björklund et al., 2007, 2010; Nederlof, 2009).

From the experiments, we observed that memory requirement reached the limit much faster

than computation time did. Thus, one of the future work is to improve the algorithm such that

less space is used. Particularly, there is a possibility to combine the present algorithm with the

method in (Parviainen and Koivisto, 2010) to trade space against time.

www.manaraa.com

90

CHAPTER 5. EXACT BAYESIAN LEARNING OF ANCESTOR

RELATIONS

In chapter 4, we presented a parallel algorithm for computing the exact posterior proba-

bilities of all directed edges in Bayesian networks. Our parallel algorithm is based on Koivisto

(2006a)’s DP algorithm, which can only evaluate the modular structural features, e.g., edges.

To deal with non-modular feature, e.g., ancestor relations, an analogous DP algorithm takes

O(n3n) time and O(3n) space (Parviainen and Koivisto, 2011). However, their algorithm re-

quires a special form of structure prior over DAGs that does not respect Markov equivalence. In

this chapter, we develop a new DP algorithm for exact Bayesian learning of ancestor relations.

Unlike the DP algorithm by Parviainen and Koivisto (2011), our algorithm uses the standard

structure-modular prior, thus allows the uniform prior and respects Markov equivalence.

5.1 Introduction

Ancestor relations, defined as a directed path in Bayesian networks, encode long-range

causal relations between variables. For example, biologists would also be interested in iden-

tifying all upstream activators of a target gene in a gene regulatory network in addition to

its direct regulators. As mentioned, inferring the existence of an ancestor relation based on

a single DAG is unreliable. Instead, we take the Bayesian approach and try to compute the

posterior probability of the ancestor relation by integrating over all possible DAGs.

Computing the posterior probability of ancestor relations is harder, because ancestor rela-

tions are non-modular features whose representations can not be factorized like the modular

features. Parviainen and Koivisto (2011) proposed a DP algorithm that can compute the pos-

teriors of all possible ancestor relations in O(n3n) time and O(3n) space. Their algorithm is

www.manaraa.com

91

analogous to Koivisto (2006a)’s algorithm for computing edge posteriors. One issue with these

algorithms is that they all assume an order-modular prior P (G), thus perform summation over

order space instead of DAG space. As a result, the computed posteriors would bias towards

DAGs consistent with more linear orders and the Markov equivalence is not respected either.

To adhere to the uniform prior, Tian and He (2009) developed a novel DP algorithm directly

summing over the DAG space. Their algorithm is capable of evaluating all directed edges in

O(n3n) time and O(n2n) space.

In this chapter we extend Tian and He (2009)’s work and develop a novel algorithm to

compute the exact posterior probabilities of ancestor relations (directed paths) in Bayesian

networks.

5.2 Preliminaries

Given an observational data D, the joint probability P (G,D) is composed of

P (G,D) = P (G)P (D|G), (5.1)

where P (G) specifies the structure prior, and P (D|G) is the data likelihood.

With standard assumptions on the parameter priors (Dirichlet prior for multinomial random

variables, Wishart prior for Gaussian random variables) including global and local parameter

independence and parameter modularity (Cooper and Herskovits, 1992; Friedman and Koller,

2003), the data likelihood P (D|G) is decomposed into

P (D|G) =
∏
i∈V

scorei(Pa
G
i : D), (5.2)

where scorei(Pa
G
i : D) is the so-called local scores and has a closed-form solution.

Moreover, the structure modularity assumes

P (G) =
∏
i∈V

Qi(Pa
G
i), (5.3)

where Qi(Pa
G
i) is some function from the subsets of V − {i} to the non-negative reals. For

ease of exposition, we define, for any i ∈ V and PaGi ⊆ V − {i}

Bi(Pa
G
i) ≡ Qi(PaGi)scorei(Pa

G
i : D). (5.4)

www.manaraa.com

92

We then obtain

P (G,D) =
∏
i∈V

Bi(Pa
G
i). (5.5)

5.3 Previous Approaches

Let f be a structural feature represented by an indicator function such that f(G) is 1 if the

feature is present in G and 0 otherwise. In Bayesian approach, we are interested in computing

the posterior P (f |D) of the feature, which can be obtained by computing the joint probability

P (f,D) as

P (f,D) =
∑
G

f(G)P (G,D). (5.6)

The summation is intractable in practice since the number of all possible DAGs is in the or-

der of O(n!2n(n−1)/2). Thus, much research has proposed to work on the order space (Friedman

and Koller, 2003; Koivisto and Sood, 2004; Koivisto, 2006a; Parviainen and Koivisto, 2011).

Formally, an order ≺ is a linear order (L1, ..., Ln) on the index set V , where Li specifies the

predecessors of i in the order, i.e., Li = {j : j≺i}. We say that a structure G = (Pa1, ..., Pan)

is consistent with an order ≺, denoted by G ∈≺, if Pai⊆Li for all i. Then we can compute

P (f,D) =
∑
≺
P (≺)

∑
G∈≺

f(G)P (D|G)P (G| ≺). (5.7)

It turns out with such treatment, the computation can be more efficient and convenient.

Indeed, it has been shown that the posteriors of all possible ancestor relations can be evaluated

in time O(n3n) and space O(3n) using this order-based summation scheme (Parviainen and

Koivisto, 2011).

This treatment is problematic because it treats different variable orders as mutually ex-

clusive events. However, the corresponding sets of consistent DAGs are overlapping. If we

introduce a uniform prior P (≺) and a uniform P (G| ≺), the resulting prior P (G) is not uni-

form. It weights the DAGs by the number of linear extensions. For example, an empty network

without any edge is consistent with n! linear orders, while a chain network (see Figure 5.1a)

is consistent with only one linear order. The resulting posteriors will bias towards DAGs con-

sistent with more linear orders. For the same reason, two Markov equivalent DAGs (Pearl,

www.manaraa.com

93

2000) may receive unequal priors. For example, the two DAGs shown in Figure 5.1 are Markov

equivalent. However, the tree DAG in Figure 5.1b will be weighted 6 times as the chain DAG

in Figure 5.1a. Thus, the Markov equivalence is not respected.

(a) A chain DAG (b) A tree DAG

Figure 5.1: Two Markov equivalent DAGs.

Next, we will develop a novel algorithm for Bayesian learning of ancestor relations that

directly performs summation over the DAG space by exploiting sinks. Our algorithm allows

the uniform prior P (G) and respects the Markov equivalence.

5.4 Bayesian Learning of Ancestor Relations

5.4.1 Algorithm

We say s is an ancestor of t, or t is a descendant of s, if G contains a directed path from s

to t, denoted as s t. The posterior probability of an ancestor relation s t is evaluated by

P (s t|D) = P (s t,D)/P (D). (5.8)

The joint probability P (s t,D) can be computed by

P (s t,D) =
∑

G∈Gs t

P (G,D) =
∑

G∈Gs t

∏
i∈V

Bi(Pa
G
i), (5.9)

where Gs t ≡ {G : s t ∈ G}, namely the set of all possible DAGs over V that contain a

s t.

For any S ⊆ V , let GS denote a DAG over S. For any v ∈ S, let PaGS
v be the parent set

of v in GS , and deGS
(v) ≡ {u|u ← · · · ← v in GS or u = v} be the set of all descendants of

v (including v) in GS . For any T, S such that s ∈ T ⊆ S ⊆ V , let Gs(S, T) denote the set

of all possible DAGs over S such that T are the set of all descendants of s in GS . That is,

GS ∈ Gs(S, T) if and only if deGS
(s) = T . We define, for any s ∈ T ⊆ S ⊆ V ,

Hs(S, T) ≡
∑

GS∈Gs(S,T)

∏
i∈S

Bi(Pa
GS
i). (5.10)

www.manaraa.com

94

Then we have the following lemma:

Lemma 5.1.

P (s t,D) =
∑

T :{s,t}⊆T⊆V

Hs(V, T). (5.11)

Proof. We have Gs t = ∪T :{s,t}⊆T⊆V Gs(V, T). Further, for any T1 6= T2, we have Gs(V, T1) ∩

Gs(V, T2) = ∅. This means Gs(V, T) for all T such that s, t ∈ T ⊆ V form a partition of the set

Gs t. An illustration of this partition is showed in Figure 5.2. Thus,

P (s t,D) =
∑

G∈Gs t

∏
i∈V

Bi(Pa
G
i)=

∑
T :{s,t}⊆T⊆V

∑
G∈Gs(V,T)

∏
i∈V

Bi(Pa
G
i)=

∑
T :{s,t}⊆T⊆V

Hs(V, T).

(5.12)

Figure 5.2: A partition of Gs t by s’s descendant set T .

Now the problem is decomposed into computing Hs(V, T) for all T s.t. {s, t} ⊆ T ⊆ V . We

show that Hs(S, T) for all T , S such that {s} ⊆ T ⊆ S ⊆ V can be computed recursively. We

immediately noticed that these Hs(S, T)’s can be divided into two cases: T = {s} and T 6= {s}

(or T − {s} 6= ∅).

Case 1: T = {s}.

In this case, s is sink in GS (see Figure 5.3). For any S ⊆ V , let G(S) denote the set of all

possible DAGs over S. Then we have

Hs(S, {s}) = [
∑

Pas⊆S−{s}

Bs(Pas)][
∑

GS−{s}∈G(S−{s})

∏
i∈S−{s}

Bi(Pa
GS−{s}
i)]. (5.13)

www.manaraa.com

95

Figure 5.3: Case 1: T = {s}.

For any S ⊆ V , define function

H(S) ≡
∑

GS∈G(S)

∏
i∈S

Bi(Pai), (5.14)

and for each i ∈ V and all U ⊆ V − {i}, define

Ai(U) ≡
∑

Pai⊆U
Bi(Pai). (5.15)

The function Ai is known as the zeta transform of Bi which can be computed by the so-

called fast zeta transform algorithm in time O(n2n) (Koivisto and Sood, 2004). Now we can

rewrite Equation 5.13 as

Hs(S, {s}) = As(S − {s})H(S − {s}). (5.16)

Tian and He (2009) proposed a DP algorithm to sum over G(S) by exploiting possible sinks

of DAGs and inclusion-exclusion principle. Due to Proposition 2 in (Tian and He, 2009), we

have that H(S) can be computed recursively by the following

H(S) =

|S|∑
k=1

(−1)k+1
∑

W⊆S,|W |=k

H(S −W)
∏
j∈W

Aj(S −W), (5.17)

with the base case H(∅) = 1. H(S) for all S ⊆ V can be computed with time O(n3n−1) and

space O(n2n) (Tian and He, 2009).

Case 2: T 6= {s} (or T − {s} 6= ∅).

For any W ⊆ S, let Gs(S, T,W) denote the set of DAGs in Gs(S, T) such that all nodes in

W are (must be) sinks.1 We first note that for any W such that s ∈W , Gs(S, T,W) = ∅. This

1W may not include all the sinks in GS . Some nodes in S −W could be sinks.

www.manaraa.com

96

trivially holds because T − {s} 6= ∅ implies that s must have other descendants besides itself

thus s cannot be a sink in GS . Note that Gs(S, T, ∅) = Gs(S, T). For any W ⊆ S − {s}, we

define

Fs(S, T,W) ≡
∑

GS∈Gs(S,T,W)

∏
i∈S

Bi(Pa
GS
i). (5.18)

Since every DAG has at least one sink, we have Gs(S, T) = ∪j∈S−{s}Gs(S, T, {j}). Fur-

ther, it is clear that ∩j∈WGs(S, T, {j}) = Gs(S, T,W). Then the summation over Gs(S, T) in

Equation 5.10 can be computed by summing over the DAGs in Gs(S, T, {j}) separately and

correcting the overlaps. By weighted inclusion-exclusion principle,

Hs(S, T) =

|S|−1∑
k=1

(−1)k+1
∑

W⊆S−{s},|W |=k

∑
GS∈Gs(S,T,W)

∏
i∈S

Bi(Pa
GS
i)

=

|S|−1∑
k=1

(−1)k+1
∑

W⊆S−{s},|W |=k

Fs(S, T,W).

(5.19)

Next we show that Fs(S, T,W) and Hs(S, T) can be computed recursively. The central

idea is to convert the sum of products in Equation 5.18 to product of sums. That is, we will

consider the summation over W and the summation over S −W separately. Since any node in

W must be a sink in GS , it can only select parents from S −W . There are two sub-cases.

Sub-case 1: T ∩W = ∅.

If T ∩W = ∅, the sum of products in Equation 5.18 can be freely decomposed to product of

sums for nodes in W and sum over remaining nodes in S −W . As showed in Figure 5.4a, any

node in W can only select parents from S −W − T . For nodes in S −W , we have summation

over Gs(S −W,T). Then we have

Fs(S, T,W) = [
∏
j∈W

∑
Paj⊆(S−T−W)

Bj(Paj)][
∑

GS−W∈Gs(S−W,T)

∏
i∈S−W

Bi(Pa
GS−W

i)]

=
∏
j∈W

Aj(S − T −W)Hs(S −W,T)

=
∏
j∈W

Aj(S − T −W)Hs(S −W,T −W) (because T −W = T in this case).

(5.20)

www.manaraa.com

97

(a) Sub-case 1: T ∩W = ∅ (b) Sub-case 2: T ∩W 6= ∅

Figure 5.4: Two sub-cases when computing Fs(S, T,W).

Sub-case 2: T ∩W 6= ∅.

In this case, nodes in W − T , T ∩ W , and S − W should be handled separately (see

Figure 5.4b). Nodes in W −T can only select parents from S−W −T . Any node in T ∩W can

select parents from S −W . In addition, at least one node from T −W must be included in its

parent set to guarantee that it is a descendant of s. For nodes in S −W , we have summation

over Gs(S −W,T −W). Then we have

Fs(S, T,W) = [
∏

j∈T∩W

∑
Paj⊆(S−W)
Paj∩(T−W)6=∅

Bj(Paj)][
∏

j∈W−T

∑
Paj⊆

(S−T−W)

Bj(Paj)][
∑

GS−W∈
Gs(S−W,T−W)

∏
i∈S−W

Bi(Pai)]

= {
∏

j∈T∩W
[

∑
Paj⊆(S−W)

Bj(Paj)−
∑
Paj⊆

(S−W−T)

Bj(Paj)]}
∏

j∈W−T
Aj(S − T −W)Hs(S −W,T −W)

= {
∏

j∈T∩W
[Aj(S −W)−Aj(S −W − T)]}

∏
j∈W−T

Aj(S − T −W)Hs(S −W,T −W).

(5.21)

For ease of exposition, define function As as follows:

As(S, T,W) ≡


∏
j∈W Aj(S − T −W) if T ∩W = ∅

{
∏
j∈T∩W [Aj(S −W)−Aj(S −W − T)]}

∏
j∈W−T Aj(S − T −W) if T ∩W 6= ∅

(5.22)

Now combining Sub-case 1 and 2, Fs(S, T,W) can be neatly written as

Fs(S, T,W) = As(S, T,W)Hs(S −W,T −W) (5.23)

www.manaraa.com

98

Plugging Equation 5.23 into Equation 5.19, we obtain

Hs(S, T) =

|S|−1∑
k=1

(−1)k+1
∑

W⊆S−{s}
|W |=k

As(S, T,W)Hs(S −W,T −W) (5.24)

In summary, we arrive at the following recursive scheme for computing Hs(S, T) for any

{s} ⊆ T ⊆ S ⊆ V .

Theorem 5.1. For all T , S such that {s} ⊆ T ⊆ S ⊆ V , Hs(S, T) can be computed recursively

as follows:

(1) For all S ⊆ V − {s},

H(S) =

|S|∑
k=1

(−1)k+1
∑

W⊆S,|W |=k

H(S −W)
∏
j∈W

Aj(S −W),

with the base case H(∅) = 1.

(2) For all S s.t. s ∈ S ⊆ V , Hs(S, {s}) = As(S − {s})H(S − {s}).

(3) For all T, S s.t. {s} ⊂ T ⊆ S ⊆ V ,

Hs(S, T) =

|S|−1∑
k=1

(−1)k+1
∑

W⊆S−{s}
|W |=k

As(S, T,W)Hs(S −W,T −W).

5.4.2 Efficient Computation of As(S, T,W)

We note that there are repeated computation of
∏
j∈W Aj(U) in the phase of computing

H(S) and in the phase of computing Hs(S, T). To facilitate the computation of
∏
j∈W Aj(U)

and As(S, T,W), we define for any W ⊆ V , U ⊆ V −W ,

AA(U,W) ≡
∏
j∈W

Aj(U). (5.25)

Then for a fixed U , we have

AA(U,W) = Aj(U)AA(U,W − {j}) for any j ∈W. (5.26)

Thus, for a fixed U , AA(U,W) for all W ⊆ V −U can be computed in the manner of dynamic

programming in O(2n−|U |) time. Then AA(U,W) for all U ⊆ V and all W ⊆ V − U can

www.manaraa.com

99

be computed in
∑n
|U |=0

(
n
|U |
)
2n−|U | = O(3n) time. With the pre-computation of AA(U,W),

As(S, T,W) for any T , S such that {s} ⊂ T ⊆ S ⊆ V can be computed more efficiently: if

T ∩W = ∅,

As(S, T,W) =
∏
j∈W

Aj(S − T −W) = AA(S − T −W,W), (5.27)

else if T ∩W 6= ∅,

As(S, T,W) = {
∏

j∈T∩W
[Aj(S −W)−Aj(S −W − T)]}

∏
j∈W−T

Aj(S − T −W)

= {
∏

j∈T∩W
[AA(S −W, {j})−AA(S −W − T, {j})]}AA(S − T −W,W − T).

(5.28)

In summary, we have

As(S, T,W) ≡


AA(S − T −W,W) if T ∩W = ∅

{
∏
j∈T∩W [AA(S −W, {j})−AA(S −W − T, {j})]}

AA(S − T −W,W − T) if T ∩W 6= ∅

(5.29)

5.4.3 Overall Algorithm to Compute P (s t|D)

Finally we summarize the results in section 5.4.1 and section 5.4.2 and outline the algorithm

for computing posterior probability of any ancestor relation s t.

Algorithm 5.1 Computing the posterior probability of an ancestor relation s t.

(a) For all i ∈ V , Pai ⊆ V − {i}, compute Bi(Pai). Time complexity O(n2n−1).

(b) For all i ∈ V , U ⊆ V − {i}, compute Ai(U). Time complexity O(n2n−1).

(c) For all U ⊆ V , W ⊆ V − U , compute AA(U,W). Time complexity O(3n).

(d) For all S ⊆ V , compute H(S) in the lexicographic order of S. Time complexity O(3n−1).

(e) For all S ⊆ V s.t. s ∈ S, compute Hs(S, {s}). Time complexity O(2n−1).

www.manaraa.com

100

(f) For all T, S such that {s} ⊂ T ⊆ S ⊆ V , compute Hs(S, T) in the lexicographic order of

S and T , with T as the outer loop and S as the inner loop. For example, we start the

computation of Hs(S, {s, i}) for each i ∈ V −{s} and all S such that {s, i} ⊆ S ⊆ V in the

lexicographic order of S. Then we compute Hs(S, {s, i, j}) for each {i, j} ⊆ V − {s} and

all S such that {s, i, j} ⊆ S ⊆ V in the lexicographic order of S, so on and so forth and

finally we compute Hs(V, V).

(g) Compute P (s t,D) by P (s t,D) =
∑

T :{s,t}⊆T⊆V Hs(V, T) and output P (s t|D) =

P (s t,D)/H(V).2 Time complexity O(2n−2).

It is worth mentioning that the posterior probability of any ancestor relation can only be

interpreted with regard to its prior probability. This prior probability can also be computed

by Algorithm 5.1 with all local scores scorei(Pa
G
i : D) set to 1.

5.4.4 Time and Space Complexity

The computing times for steps (a) to (e) and step (g) have been given already. The overall

computing time is actually dominated by step (f).

For any T , S s.t. {s} ⊂ T ⊆ S ⊆ V , we compute Hs(S, T) in O(|S| · 2|S|−1) time (any

As(S, T,W) can be computed on the fly in time O(|S|)). Thus, all Hs(S, T) can be computed

in time

n∑
|S|=2


(
n− 1

|S| − 1

) |S|∑
|T |=2

(
|S| − 1

|T | − 1

)
|S| · 2|S|−1


=

n∑
|S|=2


(
n− 1

|S| − 1

)|S| · 2|S|−1 |S|∑
|T |=2

(
|S| − 1

|T | − 1

)
=

n∑
|S|=2

[(
n− 1

|S| − 1

)
|S| · 2|S|−1 · 2|S|−1

]

=

n∑
|S|=2

[(
n− 1

|S| − 1

)
|S| · 4|S|−1

]
= n5n−1.

Thus, the total computation time is O(n5n−1 + 3n + n2n−1) = O(n5n−1).

2It has been shown by Tian and He (2009) that P (D) = H(V).

www.manaraa.com

101

To compute the posterior probabilities for all node pairs s, t, it suffices to repeat the com-

putation step (e) and step (f) for each s ∈ V , and for a given s to repeat step (g) for each t.

Thus, the total time for computing all possible ancestor relations s t is O(n25n−1).

Bi(Pai) for all i ∈ V , Pai ⊆ V −{i} take O(n2n−1) space. Aj(U) for all j ∈ V , U ⊆ V −{j}

take O(n2n−1) space. AA(U,W) for all U ⊆ V , W ⊆ V − U consume
∑n
|U |=0

(
n
|U |
)
2n−|U | =

O(3n) space. H(S) for all S ⊆ V take O(2n) space. Hs(S, T) for all {s} ⊆ T ⊆ S ⊆ V

consume
∑n
|S|=1

(
n−1
|S|−1

)
2|S|−1 = O(3n−1) space. Since each step in Algorithm 5.1 relies only on

the previous step. We need only store relevant scores in the memory. That is, after we compute

all Ai(U) scores, we can immediately delete all Bi(Pai) scores; after computing all AA(U,W)

scores, we delete Ai(U) scores. When computing step (f), we need only keep AA(U,W) and

Hs(S, T) scores in memory. In such way, we can use the memory more efficiently. The space

requirement is therefore O(3n + n2n).

In summary, we have the following theorem.

Theorem 5.2. The posterior probability for any ancestor relation s t can be computed in

O(n5n−1) time and O(3n + n2n) space. The posterior probabilities for all n(n − 1) possible

ancestor relations can be computed in O(n25n−1) time and O(3n + n2n) space.

5.4.5 Exact Bayesian Learning of s p t Relations

It turns out that the techniques for computing s t relations can be extended to compute

the posteriors of s p t relations, i.e., a directed path from s to t via p. For example,

biologists are interested in whether the influence of a gene on a downstream gene is regulated

by some intermediate gene or factor. Learning this type of structural features is therefore of

great interests. Due to the space limit, we only present our conclusion here in Theorem 5.3.

The algorithm and proofs are included in Appendix B.

Theorem 5.3. The posterior probability of any s p t relation can be computed in

O(n7n−2) time and O(4n−2 + 3n) space.

www.manaraa.com

102

5.5 Experiments

We have implemented Algorithm 5.1 in C++. We used BDe score for scorei(Pai : D)

with equivalent sample size being 1 (Heckerman and Chickering, 1995). We applied uniform

structure prior P (G) by setting all Qi(Pai)’s to be 1.3 All experiments were done on a Linux

desktop PC with 3.33 GHz Intel Core2 Duo CPU and 4 GB memory.

5.5.1 Running Times

We first examine the running times of our algorithm on several data sets from the UCI

Machine Learning Repository. The results are presented in Table 5.1, where n is the number

of variables, m is the sample size of each data set, T (B) records the time for computing all

Bi(Pai)’s, i.e., the local scores, and T (total) is the total time for evaluating all n(n−1) ancestor

relations. We clearly see that the running times are reflective of the exponential dependence

on n with a base around 5. This is consistent with Theorem 5.2.

Table 5.1: Execution time (in seconds)

Data Sets n m T (B) T (total)

Weather 5 14 3e-4 7e-4

Iris 5 150 6e-4 6e-4

Asia 8 500 0.02 0.2

Tic-Tac-Toe 10 958 0.6 6.5

CYTO 11 5400 8.4 32

Wine-11 11 178 0.8 76

Wine-12 12 178 1.8 411

Wine-13 13 178 4.6 2331

Wine 14 178 11.6 12856

5.5.2 Comparison of Posteriors

The order-based approach by Parviainen and Koivisto (2011) and our approach differ in the

structure prior P (G) assigned to DAGs. The order-based approach places a non-uniform prior

3Note that a constant P (G) could be canceled out in computing P (f |D) = P (f,D)/P (D).

www.manaraa.com

103

over DAGs, favoring DAGs that are consistent with more linear orders, while our approach

adheres to the uniform prior. Here we compare the posteriors computed by the two approaches

on four different data sets in Figure 5.5.

We can see that the posteriors computed by the two approaches differ in most of the

cases, demonstrating the non-negligible effect of priors on the computation results. Further, we

observed that the order-based approach often underestimates the posteriors (see Figure 5.5a

and Figure 5.5c). This can be understood by noticing that DAGs consistent with more linear

orders usually have simpler structures, for example, fewer edges or fewer directed paths than

those DAGs consistent with fewer linear orders. Since DAGs consistent with fewer linear orders

receive less weights in the order-based approach, the ancestor relations implied by these DAGs

are undercounted.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
os

te
rio

rs
 b

y
or

de
r-

ba
se

d
m

et
ho

d

Posteriors by our method

(a) Weather (n = 5, m = 14)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
os

te
rio

rs
 b

y
or

de
r-

ba
se

d
m

et
ho

d

Posteriors by our method

(b) Asia (n = 8, m = 500)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
os

te
rio

rs
 b

y
or

de
r-

ba
se

d
m

et
ho

d

Posteriors by our method

(c) Tic (n = 10, m = 958)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
os

te
rio

rs
 b

y
or

de
r-

ba
se

d
m

et
ho

d

Posteriors by our method

(d) Wine (n = 12, m = 178)

Figure 5.5: Scatter plots that compare posteriors of ancestor relations computed by our algorithm and
by order-based algorithm.

www.manaraa.com

104

5.5.3 Knowledge Discovery

Finally, we applied our algorithm to a biological data set (CYTO) which consists of flow

cytometry measurements of n = 11 phosphorylated proteins and phospholipids under 7 different

interventions and 2 unperturbed conditions. 600 measurements are taken in each condition

yielding a total dataset of m = 5400 samples. The data have been discretized into 3 states,

representing low, medium and high activity according to (Sachs et al., 2005). Figure 5.6 shows

a currently accepted consensus network.

Figure 5.6: Classical model of the CYTO data set. Modified from (Sachs et al, 2005). The proteins
of interest are in highlighted red rectangles, i.e., PKC, PLCγ, PIP2, PIP3, Akt, PKA, JNK, p38, Raf,
Mek, Erk. Ovals with serrated edges represent various interventions (green=activators, red=inhibitors).

Table 5.2: Ancestor relations learned for CYTO data set

Source Sinks

Raf Mek, PLCγ, PIP2, PIP3, Erk, Akt, PKA, p38, JNK

Mek PLCγ, PIP2, PIP3, Erk, Akt, PKA, p38, JNK

PLCγ PIP2, PIP3

PIP2 PIP3

Erk Akt

PKA PLCγ, PIP2, PIP3, Erk, Akt, p38, JNK

PKC Raf, Mek, PLCγ, PIP2, PIP3, Erk, Akt, PKA, p38, JNK

JNK PLCγ, PIP2, PIP3, p38

www.manaraa.com

105

We then used our algorithm to compute the posteriors of all 110 possible ancestor rela-

tions. We modified the local likelihood scores Bi(Pai) to take into account the interventional

nature of the data as in (Tian and Pearl, 2001). Our results shows that among all 110 possi-

ble ancestor relations, 42 ancestor relations have posteriors greater than 0.95, while all other

ancestor relations have posteriors less than 0.03.4 Table 5.2 tabulates the 42 most probable

ancestor relations. Proteins are made bold if the corresponding ancestor relations also exist

in the classical model. The learning results exhibit a high false positive rate if the classical

model is really the true model. This may be because that the ancestor relation learning is

very sensitive to the local errors. For example, one flipped edge can lead to a large number

of ancestor relation errors. However, the classical model is not necessarily the true model. As

our results showed, we had high certainty on the presence of each important ancestor relation

(P̂ (s t|D) ≥ 0.95). Thus, it is possible that the ancestor relations discovered by our method

but not in the classical model suggest potential protein signaling pathways that have yet to be

discovered by biologists.

We also compared our direct learning of ancestor relations to the deduction of (important)

ancestor relations from the edge posteriors. We used the algorithm by Tian and He (2009),

which requires O(n3n) time and O(n2n) space, to compute the posteriors of all 110 possible

edges. We then constructed a network that consisted of edges whose posteriors were greater

than 0.5 and inferred the ancestor relations from this network. We observed that the set of

(important) ancestor relations deduced from the most likely edges were exactly the same as

those predicted by the direct learning. This suggests that the two approaches do not differ

significantly in predicting the most significant ancestor relations, at least on this CYTO data

set. More systematic evaluation will be needed to confirm this observation. Moreover, we

observed that computing all edge posteriors took about 9 seconds, much faster than computing

the posteriors of ancestor relations (32 seconds, see Table 5.1). However, direct learning of

ancestor relation outputs the ancestor posterior probabilities while the network constructed

from most likely edges does not provide such information.

4Note that the prior of an ancestor relation is 0.45 for n = 11 with the uniform structure prior.

www.manaraa.com

106

5.6 Conclusion

In this chapter, we have developed a new DP algorithm to compute the exact posteriors of all

possible ancestor relations in Bayesian networks. Compared to previous order-based algorithm,

our algorithm respects the uniform structure prior and the Markov equivalence. Experimental

comparison showed the order-based approach tends to underestimate the posteriors. We have

also applied our algorithm to a biological data set to discover protein signaling pathways. This

demonstrated our algorithm in the task of knowledge discovery. Further, we have developed an

algorithm to compute the exact posterior of any s p t relation, i.e., a directed path from

s to t via p.

One major limitation of the exact algorithms proposed here (and in previous work) is their

exponential complexities, which prevent their practical use for large networks. To circumvent

the limitation, approximate methods such as MCMC sampling are commonly used. One po-

tential application of the exact algorithms given in this chapter is to assess the approximate

quality of approaches such as MCMC sampling.

www.manaraa.com

107

CHAPTER 6. JOINT DISCOVERY OF SKILL PREREQUISITE

GRAPHS AND STUDENT MODELS

In previous chapters, we studied how to learn Bayesian network structures from data in more

accurate and efficient ways. We also showed some preliminary applications of our approaches in

systems biology for modeling gene regulatory networks and protein signaling pathways. In this

chapter, we show an application of Bayesian networks in the field of educational data mining.

We use a Bayesian network structure to model the prerequisite relationships between the skills

and study how we learn these relationships from student performance data. Further, since this

Bayesian network also represent a joint probability distribution over the skill variables (and

item variables), it becomes a type of student model that can be used for cognitive diagnosis. In

summary, we introduce a novel algorithm that can jointly discover a prerequisite graphs and a

student model from data.

6.1 Introduction

Course curricula are usually organized in a meaningful sequence that evolves from relatively

simple lessons to more complex ones. Among these lessons, some are required to be mastered

by students before the subsequent ones can be learned. For instance, students have to know

how to do addition before they learn to do multiplication. We refer to prerequisite structure as

the relationships among skills that place strict constraints on the order in which skills can be

acquired.

Prerequisite structures are crucial for designing intelligent tutoring systems that assess

student knowledge or offer remediation interventions to students. Building such systems require

prerequisite information that is often hand-engineered by subject-matter experts in a costly

www.manaraa.com

108

and time-consuming process. Moreover, the prerequisite structures specified by the experts are

seldom tested and might be unreliable in the sense that experts may have “blind spots”.

Recent interest in computer assisted education promises large amounts of data from stu-

dents solving items— questions, problems, parts of questions. Performance data –what items

a learner answers correctly– can be used to create student models. These models represent an

estimate of skill proficiency at a given point in time (VanLehn, 1988). For example, a student

model can represent that Alice has already mastered integer addition, but Bob has not. Stu-

dent models are often used to personalize instruction in tutoring systems or to predict future

student performance. In this chapter, we introduce Combined student Modeling and prereq-

uisite Discovery (COMMAND), a novel algorithm for simultaneously discovering prerequisite

structure of skills and a student model from student performance data.

6.2 Relation to Prior Work

Prior work has investigated how to discover prerequisites among items without considering

their mapping into skills (Desmarais et al., 2006; Vuong et al., 2010). Item-to-skill mappings

(also called Q-matrices) are desirable because they allow more interpretable diagnostic informa-

tion. Because of this, follow-up work (Brunskill, 2010; Chen et al., 2015) has studied whether

a pair of skills have a prerequisite relationship or not. For this, we can measure if a model

that assumes a dependency between the two skills explains the data better than a model that

assumes independence. This comparison can be done with data likelihood (Brunskill, 2010) or

association rule mining (Chen et al., 2015). Although promising, prior methods have limitations

that we address:

1. We estimate the global prerequisite structure, not just the pairwise relationships. For

example, suppose we want to discover the prerequisites of three skills for English learning

(S1:syntax, S2:cohesion and S3:lexical rules). If we use prior methods, we discover that the

three skills are related among each other. However, pairwise methods are unable to tell

if the relationships are due to indirect (e.g, S3 → S2 → S1), or direct (e.g, S3→ S2 →S1)

effects.

www.manaraa.com

109

2. It is unclear how to use the output of these prerequisite structures for student modeling.

For example, it is not obvious how to best use them to make predictions of future student

performance.

3. Prior work does not provide quantitative evaluation using real student data. Overall,

learner data has been used to provide examples, but without any methodology that can

help compare what algorithm works better.

Bayesian networks have been useful to model prerequisite structures (Mislevy et al., 1999).

Bayesian networks allows modeling the full structure of skills (beyond pairwise relationships)

and can encode conditional independence between the skills. Unfortunately, prior work with

Bayesian networks requires a domain expert to design the prerequisite structures (Käser et al.,

2014), and automatic techniques have not been demonstrated with real student data (Scheines

et al., 2014). We now describe the COMMAND algorithm that discovers a Bayesian network

that encodes the prerequisite structure of skills.

6.3 The COMMAND Algorithm

COMMAND learns the prerequisite structure of the skills from data with a statistical model

called Bayesian network (Pearl, 1988; Spirtes et al., 2001). Bayesian networks are one type of

probabilistic graphical models because they can be represented visually and algebraically as a

collection of nodes and edges. A tutorial description of Bayesian networks in education can

be found elsewhere (Mislevy et al., 1999), but for now we say that they are often described

with two components: the nodes represent the random variables, which we describe using

conditional probability tables (CPTs), and the set of edges that form a directed acyclic graph

(DAG) represent the conditional dependencies between the variables. Bayesian networks are a

flexible tool that can be used to model an entire curriculum.

Figure 6.1 illustrates an example of a prerequisite structure modeled with a Bayesian net-

work. Here, we relate four test items with the skills of addition and multiplication. Addition is

a prerequisite of multiplication thus there is an arrow from addition to multiplication. Modeling

prerequisites as edges in a Bayesian network allows us to frame the discovery of the prerequisite

www.manaraa.com

110

Figure 6.1: A hypothetical Bayesian network. Solid edges are given by item to skill mapping, dashed
edges between skill variables are to be discovered from data. The conditional probability tables are to
be learned.

relationships as the well-studied machine learning problem of learning a Bayesian network from

data with the presence of unobserved latent variables. We represent the prerequisite structure

using Bayesian networks that use latent binary variables to represent the student knowledge of

a skill (i.e., mastery or not mastery), and observed binary variables that represent the student

performance answering items (i.e., correct or incorrect).

Algorithm 6.1 describes the COMMAND pipeline. The input to COMMAND is a matrix D

with n×p dimensions, representing n students, answering p items. Each entry in D encodes the

performance of a student (see Table 6.1 for an example). Additionally, we require a Q-matrix to

represent the item-to-skill mapping. Q-matrices are often designed by subject matter experts

but automatic methods to discover them exist (González-Brenes, 2015).

COMMAND relies on a popular machine learning algorithm called Structural Expectation

Maximization (Structural EM), which to the extent of our knowledge has not been used in

educational applications before. Structural EM extends the Expectation Maximization (EM)

algorithm to allow efficient structure learning of Bayesian networks when there are latent vari-

ables or missing values in the data. A secondary contribution of our work is introducing Struc-

tural EM for learning Bayesian network structures from educational data. We now describe

the steps of COMMAND in detail.

www.manaraa.com

111

Table 6.1: Example student performance matrix to use with COMMAND. The performance of

a student is encoded with 1 if the student answered correctly the item, and 0 otherwise.

User Item 1 Item 2 Item 3 Item p

Alice 0 1 0

Bob 1 1 ... 1

Carol 0 0 1

...

Algorithm 6.1 The COMMAND algorithm

Require: A matrix D of student performance on a set of test items, skill-to-item mapping Q

(containing a set of skills S).

1: G0 ← Initialize(S, Q)

2: i← 0

3: do

4: E -step:

5: Θ∗i ← ParametricEM(Gi,D)

6: D∗i ← Inference(Gi,Θ
∗
i ,D)

7: M -step:

8: 〈Gi+1,Θi+1〉 ← BNLearning(Gi,D
∗
i)

9: i← i+ 1

10: while stop criterion is not met

11: RE ← FindReversibleEdges(Gi)

12: EC ← EnumEquivalentDAGs(Gi)

13: DE ← {}
14: for every reversible edge Si − Sj in RE do

15: ratio← P (Sj=0|Si=0)
P (Si=0|Sj=0)

1

16: if ratio ≥ 1 then

17: ratio∗ = ratio

18: DE ← DE ∪ Si → Sj
19: else

20: ratio∗ = 1
ratio

21: DE ← DE ∪ Si ← Sj
22: end if

23: end for

24: sort(DE) by ratio∗ in descending order

25: while DE is not empty do

26: e← dequeue(DE)

27: if ∃G ∈ EC e ∈ G then

28: ∀G ∈ EC, remove G from EC if e /∈ G
29: end if

30: end while

31: return EC

Initialization

Structural EM

Discriminate

between

equivalent BNs

www.manaraa.com

112

6.3.1 Initial Bayesian Network

COMMAND first creates an initial Bayesian network using the Q-matrix by creating an

arc to each item from each of its required skills. Because there are no edges between the skills,

this initial network does not encode any prerequisite information. COMMAND uses Structural

EM to learn arcs (prerequisites) between the skill variables.

6.3.2 Structural EM

A common solution to learning a Bayesian network from data is the score-and-search ap-

proach (Cooper and Herskovits, 1992; Heckerman et al., 1997). This approach uses a scoring

function (like the Bayesian Information Criterion (BIC)) to measure the fitness of a Bayesian

network structure to the observed data, and it attempts to find the optimal model in the

space of all possible Bayesian network structures. However, the conventional score-and-search

approaches rely on efficient computation of the scoring function, which is only feasible for prob-

lems where data contain observations for all variables in the Bayesian network. Unfortunately,

our domain has skill variables that are not directly observed. An intuitive work-around is

to use EM to estimate the scoring function. However, in this case EM takes a large number

(hundreds) of iterations that require Bayesian network inference, which is computationally pro-

hibitive. Further, we need run EM for each candidate structure, and the number of possible

Bayesian network structures is super-exponential with respect to the number of nodes. The

Structural EM algorithm (Friedman, 1997) is an efficient alternative.

Structural EM is an iterative algorithm that inputs a matrix D of student performance (see

example Table 6.1). Figure 6.2 illustrates one iteration of the Structural EM algorithm. The

relevant steps are also sketched in Algorithm 6.1. Each iteration consists of an Expectation step

(E-step) and a Maximization step (M-step). In the E-step, it first finds the maximum likelihood

estimate Θ∗ of the CPTs for the current structure G calculated from previous iteration using

parametric EM. It then does Bayesian inference to compute the expected values for the latent

variables using the current model (G,Θ∗), and uses the values to complete the data. In the

1P (Si = a|Sj = b) can be computed using any Bayesian network inference algorithm such as Junction tree
algorithm (Koller and Friedman, 2009).

www.manaraa.com

113

Figure 6.2: An illustration of the Structure EM algorithm to discover the structure of the latent
variables. G represents the DAG structure. Θ is the set of conditional probability tables (CPTs).

M-step, it uses the conventional score-and-search approach to optimize the structure according

to the completed data (as if the latent variables were observed). Since the space of possible

Bayesian network structures is super-exponential, exhaustive search is intractable and local

search algorithms, such as greedy hill-climbing search, are often used. The E-step and M-step

interleave and iterate until some stop criterion is met, e.g., the scoring function does not change

significantly. Contrast to the conventional score-and-search algorithm, Structural EM runs EM

only on one structure in each iteration, thus is computationally more efficient.

We use an efficient implementation of Structural EM available online called LibB2. Because

COMMAND’s initialization step fixes the arcs from skills to items according to the Q-matrix,

the M-step only needs to consider the candidate structures that comply with the Q-matrix. An

advantage of using Structural EM to discover the prerequisite relationship of skills is that it can

be easily extended to incorporate domain knowledge. For example, we can place constraints on

the output structure to force or to disallow a skill to be a prerequisite of another skill. Another

advantage of Structural EM is that it can be applied when there are missing data in the student

performance matrix D (Friedman, 1997). That is, some students do not answer all the items.

The general idea is, in the E-step, the algorithm also computes the expected values for missing

data points, in addition for latent variables.

2http://compbio.cs.huji.ac.il/LibB/programs.html

http://compbio.cs.huji.ac.il/LibB/programs.html

www.manaraa.com

114

6.3.3 Discriminate Between Equivalent Bayesian Networks

Structural EM selects a Bayesian network model based on how well it explains the distribu-

tion of the data. Bayesian network theory states that some Bayesian networks are statistically

equivalent in representing the data. Thus, the output from Structural EM is actually an equiv-

alence class (EC) that may contain many Bayesian network structures3. These equivalent

Bayesian networks have the same skeleton and the same v-structures4. For instance, Figure 6.3

gives an example of a simple equivalence class containing three Bayesian networks that are not

distinguishable by Structural EM algorithm and the method in (Scheines et al., 2014). They

share the skeleton but differ in the orientation of at least one of the edges (we will call such an

edge a reversible edge). They apparently represent three different prerequisite structures.

(a) (b) (c)

Figure 6.3: Three equivalent Bayesian networks representing different prerequisite structures.

6.3.3.1 Domain Knowledge

To determine a unique structure, we use a heuristic based in domain knowledge to determine

the orientation of each reversible edge. For convenience in notation, let’s assume that the

random variables that represent skill proficiency can take two values: 0 if the skills is not

mastered, and 1 if the skill is mastered. Our assumption is that if a skill S1 is the prerequisite

of a skill S2, a student can not master skill S2 before she masters S1. More formally:

Assumption 6.1. If S1 is a prerequisite of S2 (i.e., S1 → S2), then S1 = 0 ⇒ S2 = 0. In

other words, P (S2 = 0|S1 = 0) = 1.

Our assumption implies that S1 cannot be a prerequisite of S2 if P (S2 = 0|S1 = 0) = 1 does

not hold. This puts a constraint on the joint distribution encoded by the Bayesian network to

be learned.
3Structural EM outputs a DAG. However, the scoring function does not discriminate between the many DAGs

of the equivalence class.
4A v-structure with nodes u, v, w in a DAG are the directed edges u → v and w → v and u and w are not

adjacent in the DAG (Verma and Pearl, 1990).

www.manaraa.com

115

For example, consider the case of choosing the orientation of a reversible edge S1−S2 from

S1 ← S2 or S1 → S2. We can check whether P (S2 = 0|S1 = 0) = 1 or P (S1 = 0|S2 = 0) = 1.

However, it is possible that our assumption does not hold, and a student got to master a skill

even if he does not know the prerequisite. Moreover, because of statistical noise, the conditional

probability P (S2 = 0|S1 = 0) may not be exactly 1. Thus, we use the following empirical rule:

Rule 6.1. If P (S2 = 0|S1 = 0) ≥ P (S1 = 0|S2 = 0), we determine S1 → S2; otherwise, we

determine S1 ← S2.

Note that these two conditional probabilities can be computed easily from the Bayesian

network model output from Structural EM. The intuition behind this rule is that the conditional

probability P (S2 = 0|S1 = 0) can be interpreted as the strength of the prerequisite relationship

S1 → S2. The larger of this probability, the more likely the relationship S1 → S2 holds.

Since here we are concerned with which direction the edge goes, we simply compare the two

probabilities and select the direction that is more probable. Note that P (S2 = 0|S1 = 0) = 1

and P (S1 = 0|S2 = 0) = 1 may hold simultaneously. If S1 → S2 is true, P (S1 = 0|S2 = 0) = 1

only if P (S1 = 1) = 0 or if P (S2 = 0|S1 = 1) = 0.5 If P (S1 = 1) = 0, this implies that no

student knows S1. If P (S2 = 0|S1 = 1) = 0, it means that learning S2 becomes trivial once

students know S1. For simplicity, we ignore this extreme case.

6.3.3.2 Theoretical Justification of Heuristic

We now provide theoretical justification for the rule we propose. Consider a simple equiv-

alence class, which contains two equivalent DAGs S1 → S2 and S1 ← S2, where the true

model is S1 → S2. We have three free conditional probability parameters: P (S1 = 0) = p,

P (S2 = 0|S1 = 0) = q, P (S2 = 1|S1 = 1) = r. Let’s define a ratio that quantifies choosing the

true model:

ratio =
P (S2 = 0|S1 = 0)

P (S1 = 0|S2 = 0)
. (6.1)

Using Bayes rule and rules of probability, the rule ratio ≥ 1 becomes (1−p)(1−r)−p(1−q) ≥ 0.

Since ratio depends on p, q and r, we study how ratio changes with these parameters. Figure 6.4

5Since P (S1 = 0|S2 = 0) = P (S2=0|S1=0)P (S1=0)
P (S2=0|S1=0)P (S1=0)+P (S2=0|S1=1)P (S1=1)

, P (S1 = 0|S2 = 0) = 1 only if P (S2 =

0|S1 = 1)P (S1 = 1) = 0.

www.manaraa.com

116

(a) (b) (c)

Figure 6.4: Contour plots of log(ratio) against P (S1 = 0) and P (S2 = 1|S1 = 1) for various values of
P (S2 = 0|S1 = 0).

shows the contour plots of log(ratio) against P (S1 = 0) and P (S2 = 1|S1 = 1) for three

different values of P (S2 = 0|S1 = 0). The white region in each contour plot is the region where

our heuristic fails because ratio < 1. Figure 6.4(a) shows that when P (S2 = 0|S1 = 0) =

q = 1, our heuristic rule is always correct, no matter what, because there is no white space.

With P (S2 = 0|S1 = 0) decreasing, the white region becomes larger and the rule becomes

less accurate. As mentioned, P (S2 = 0|S1 = 0) can be interpreted as the strength of the

prerequisite relationship. If we fix the value of P (S2 = 0|S1 = 0) and assume that the two

free parameters p and r are independent and uniformly distributed, then the area of the white

region represents the probability that the rule makes a wrong decision. As the strength of

the prerequisite relationship gets weaker, our rule to determine the prerequisite relationship

becomes less accurate.

6.3.3.3 Orient All Reversible Edges

Using our proposed rule, we can orient every reversible edge in the network structure.

However, orienting each reversible edge is not independent and may conflict with each other.

Having oriented one edge would constrain the orientation of other reversible edges because we

have to ensure the graph is a DAG and the equivalence property is not violated. For example, in

Figure 6.5a, if we have determined S1 → S2, the edge S2 → S3 is enforced. In this paper, we take

an ad-hoc strategy to determine the orientation for all reversible edges. For each reversible edge

Si − Sj , we let ratio∗ = ratio if ratio ≥ 1 and ratio∗ = 1
ratio otherwise. The larger the ratio∗

www.manaraa.com

117

is, the more confidently when we decide the orientation. We sort the list of reversible edges by

ratio∗ in descending order. We then orient the edges by this ordering. In our implementation,

we use the following strategy: we first enumerate all equivalent Bayesian networks and make

them a list of candidates; when an edge is oriented to Si → Sj , we remove all contradicting

Bayesian networks from the list. Eventually only one Bayesian network structure stands. This

procedure is detailed in the Discriminate between equivalent BNs section of Algorithm 6.1.

The EnumEquivalentDAGs(Gi) implements the algorithm of enumerating equivalent DAGs

in Algorithm 3.2.

6.4 Evaluation

In § 6.4.1, we evaluate COMMAND with simulated data to assess the quality of the discov-

ered prerequisite structures. Then, in § 6.4.2 we use data collected from real students. In all

our experiments, we use BIC as the scoring function in Structural EM .

6.4.1 Simulated Data

Synthetic data allow us to study how COMMAND compares to the ground truth. For this,

we engineered three prerequisite structures (DAGs), shown in Figure 6.5. Here, each figure

represents different causal relations between the simulated latent skill variables.

(a) Structure 1

(b) Structure 2 (c) Structure 3

Figure 6.5: Three different DAGs between latent skill variables. Item nodes are omitted.

www.manaraa.com

118

For clarity, Figure 6.5 omits the item nodes; but each skill node is parent of six item

variables and each item variable has 1-3 skill nodes as parents. All of these nodes are modeled

using binary random variables. More precisely, the latent nodes represent whether the student

achieves mastery of the skill, and the observed nodes indicate if the student answers the item

correctly. Notice that these networks include the prerequisite structures as well as the skill-item

mapping.

We consider simulated data with different number of observations (n = 150, 500, 1000, 2000).

For each sample size and each DAG, we generate ten different sets of conditional probability

tables randomly with three constraints. First, we enforce that achieving mastery of the prereq-

uisites of a skill will increase the likelihood of mastering the skill. Second, for each prerequisite

pair Si → Sj , P (Sj = 0|Si = 0) is randomly selected to be in [0.9, 1.0]. Finally, mastery of

a skill increases the probability of student correctly answering the test item. In total we gen-

erated 120 synthetic datasets (3 DAGs x 4 sample sizes x 10 CPTs), and report the average

results.

We evaluate how well COMMAND can discover the true prerequisite structure using met-

rics designed to evaluate Bayesian networks structure discovery. In particular, we use the F1

adjacency score and the F1 orientation score. The adjacency score measures how well we can

recover connections between nodes. It is a weighted average of the true positive adjacency rate

and the true discovery adjacency rate. On the other hand, the orientation score measures how

well we can recover the direction of the edges. It is calculated as a weighted average of the true

positive orientation rate and true discovery orientation rate. In both cases, the F1 score reaches

its best value at 1 and worst at 0. Moreover, for comparison, we compute the F1 adjacency

score for Bayesian network structures whose skill nodes are fully connected with each other.

These fully connected DAGs will serve as baselines for evaluating the adjacency discovery6.

For completeness, we list these formulas in Tables 6.2 and 6.3, respectively.

We use these metrics to evaluate the effect of varying the number of observations of the

training set (sample size) on the quality of learning the prerequisite structure. We designed

6We do not compute F1 orientation score for fully connected DAGs because all edges in a fully connected
DAG are reversible.

www.manaraa.com

119

Table 6.2: Formulas for measuring adjacency rate (AR)

Metric Formula

True positive (TPAR) # of correct adjacencies in learned model
of adjacencies in true model

True discovery (TDAR) # of correct adjacencies in learned model
of adjacencies in learned model

F1-AR 2·TPAR·TDAR
TPAR+TDAR

Table 6.3: Formulas for measuring orientation rate (OR)

Metric Formula

True positive (TPOR) # of correctly directed edges in learned model
of directed edges in true model

True discovery (TDOR) # of correctly directed edges in learned model
of directed edges in learned model

F1-OR 2·TPOR·TDOR
TPOR+TDOR

experiments to specifically answer the following four questions:

1. How does the type of items affect COMMAND’s ability to recover the prerequisite struc-

ture? We consider the situation where in the model each item requires only one skill and

the situation where each item requires multiple skills.

2. How well does COMMAND perform when there is noise in the data? We focus on studying

noise due to the presence of unaccounted latent variables.

3. How well does COMMAND perform when the student performance data have missing

values?

4. How is COMMAND compared with other prerequisite discovery methods? In particular,

we compare COMMAND to the Probabilistic Association Rules Mining (PARM) method

(Chen et al., 2015).

We now investigate these questions.

6.4.1.1 Single-skill vs Multi-skill Items

We consider two situations where different types of Q-matrix are used. In the first situation,

each item node maps to exactly one skill node. In the second one, each item maps to 1-3 skills.

www.manaraa.com

120

 0

 0.2

 0.4

 0.6

 0.8

 1

150 500 1000 2000

F
1

sc
or

e

Sample Size

F1 Score for Adjacency Discovery ± 1.96*SE

Struct 1
Struct 2
Struct 3

 0

 0.2

 0.4

 0.6

 0.8

 1

150 500 1000 2000

F
1

sc
or

e

Sample Size

F1 Score for Adjacency Discovery ± 1.96*SE

Struct 1
Struct 2
Struct 3

 0

 0.2

 0.4

 0.6

 0.8

 1

150 500 1000 2000

F
1

sc
or

e

Sample Size

F1 Score for Edge Orientation ± 1.96*SE

Struct 1
Struct 2
Struct 3

 0

 0.2

 0.4

 0.6

 0.8

 1

150 500 1000 2000

F
1

sc
or

e

Sample Size

F1 Score for Edge Orientation ± 1.96*SE

Struct 1
Struct 2
Struct 3

Single Skill Multiple Skill

Figure 6.6: Comparison of F1 scores for adjacency discovery (top row) and for edge orientation (bottom
row). Horizontal lines are baseline scores for fully-connected (complete) networks. The error bars show
the 95% confidence intervals, i.e., ±1.96∗SE.

Figure 6.6 compares the F1 of adjacency discovery and edge orientation results under the two

types of Q-matrices. With only 500 observations, COMMAND improves on a fully connected

Bayesian network baseline. COMMAND’s accuracy improves with the amount of data, but its

accuracy is slightly lower when the Q-matrix contains items that require more than one skill. A

possible explanation for this is that multi-skill items may introduce more spurious correlations

in the data. With just 2000 observations, COMMAND recovers the true structures almost

perfectly.

6.4.1.2 Sensitivity to Noise

Real-world data sets often contain various types of noise. For example, noise may occur due

to latent variables that are not explicitly modeled. To evaluate the sensitivity of COMMAND

to noise, we synthesize the three Bayesian networks in Figure 6.5 to include a StudentAbility

www.manaraa.com

121

node that takes three possible states (low/med/high). In these Bayesian networks, students’

performance depends not only on whether they have mastered the skills, but also on their

individual ability. For simplicity, all items in the setting are single-skilled items. We first

simulated data from Bayesian networks that have a StudentAbility variable to generate “noisy”

data samples, and Figure 6.7 illustrates the procedure of this sensitivity analysis experiment

for Structure 1.

Figure 6.7: Evaluation of COMMAND with noisy data.

Figure 6.8 compares the results where noise was introduced or not. Interestingly, the noise

actually improves COMMAND’s accuracy. This improvement is more evident when the sample

size is small (see n = 150). For smaller sample sizes, Structural EM usually discovers less

relationships than actually exist, because BIC prefers sparse structures. We hypothesize that

the correlations caused by StudentAbility node would cause Structural EM to add “stronger”

edges between skill nodes, resulting in higher F1.

6.4.1.3 Sensitivity to Missing Values

Real-world datasets collected from students often have missing values, for example, when

learners do not answer all items. To evaluate how COMMAND performs on data with missing

values, we generated data sets of with 1000 observations with varying fraction of randomly

missing values (10%, 20%, 30%, 40%, 50%). We used COMMAND to recover the structures

from these data sets. Again, the models only contain single-skilled items. Figure 6.9 shows the

www.manaraa.com

122

 0

 0.2

 0.4

 0.6

 0.8

 1

150 500 1000 2000

F
1

sc
or

e

Sample Size

F1 Score for Adjacency Discovery ± 1.96*SE

Struct 1
Struct 2
Struct 3

 0

 0.2

 0.4

 0.6

 0.8

 1

150 500 1000 2000

F
1

sc
or

e

Sample Size

F1 Score for Adjacency Discovery ± 1.96*SE

Struct 1
Struct 2
Struct 3

 0

 0.2

 0.4

 0.6

 0.8

 1

150 500 1000 2000

F
1

sc
or

e

Sample Size

F1 Score for Edge Orientation ± 1.96*SE

Struct 1
Struct 2
Struct 3

 0

 0.2

 0.4

 0.6

 0.8

 1

150 500 1000 2000

F
1

sc
or

e

Sample Size

F1 Score for Edge Orientation ± 1.96*SE

Struct 1
Struct 2
Struct 3

No Noise Noisy

Figure 6.8: Results of adding systematic noise. Top: Comparison of F1 scores for adjacency discov-
ery. Horizontal lines are baseline F1 scores computed for fully connected Bayesian networks. Bottom:
Comparison of F1 scores for edge orientation.

 0

 0.2

 0.4

 0.6

 0.8

 1

0% 10% 20% 30% 40% 50%

F
1

sc
or

e

Fraction of Missing Data

F1 Score for Adjacency Discovery ± 1.96*SE

Struct 1
Struct 2
Struct 3

 0

 0.2

 0.4

 0.6

 0.8

 1

0% 10% 20% 30% 40% 50%

F
1

sc
or

e

Fraction of Missing Data

F1 Score for Edge Orientation ± 1.96*SE

Struct 1
Struct 2
Struct 3

Figure 6.9: Results of learning with missing data. Left: Comparison of F1 scores for adjacency
discovery. Horizontal lines are baseline F1 scores computed for fully connected Bayesian networks.
Right: Comparison of F1 scores for edge orientation.

www.manaraa.com

123

results of this experiment. Although accuracy decreases when the fraction of missing values

increases, COMMAND is able to recover the true structures for Structure 1 and 2 even when

the data contain up to 30% missing values.

6.4.1.4 Comparison With Prior Work

The Probabilistic Association Rules Mining (PARM) is a recent algorithm for discovering

the prerequisite relationships between skills (Chen et al., 2015). In this approach, a prerequisite

relationship S1 → S2 is considered to exist if P (S1 = 1, S2 = 1) ≥ minsup∧P (S1 = 1|S2 = 1) ≥

minconf) ≥ minprob and P (P (S1 = 0, S2 = 0) ≥ minsup ∧ P (S2 = 0|S1 = 0) ≥ minconf) ≥

minprob, where minsup, minconf and minprob are pre-specified constants between 0 and 1.

We simulate data from Structure 3 from Figure 6.5(c) (with single-skilled items), which has

21 pair-wise prerequisite relationships. We derive pair-wise prerequisite relationships from this

network and see how the two approaches discover these relationships. When experimenting

with PARM, we use minsup = 0.125, minconf = 0.76, minprob = 0.9, because they were

suggested by the authors (Chen et al., 2015).

 0

 0.2

 0.4

 0.6

 0.8

 1

150 500 1000 2000

F
1

sc
or

e

Sample size

Comparison of COMMAND and PARM (± 1.96*SE)

COMMAND
PARM

Figure 6.10: Comparison of COMMAND and PARM for discovering prerequisite relationships in Struc-
ture 3.

PARM is limited to discovering pair-wise prerequisite relationships (instead of constructing

the full structure). To make a fair comparison, we evaluate how accurately COMMAND and

PARM discover relationship pairs. For this, we use the F1 metric in Table 6.2, but we count

www.manaraa.com

124

pairs of related skills instead of adjacencies. Two skills are related if one is a descendant of

the other one. Figure 6.10 shows that COMMAND outperforms PARM, and the difference

becomes significant for sample size n ≥ 500. The low F1 score of by PARM is because it fails

to discover many prerequisite relationships (data not shown), and because PARM does not

respect transitivity. For example, PARM may reject S1 → S3 even it has discovered S1 → S2

and S2 → S3. We speculate that selecting a different set of cutoff values for PARM may

improve the results. However, determining these thresholds is not trivial and may require

experts’ intervention. By contrast, COMMAND does not require tuning.

6.4.2 Real Student Performance Data

We now evaluate COMMAND using two real-world data sets.

6.4.2.1 English Data Set

The Examination for the Certification of Proficiency in English (ECPE) dataset describes

2922 examines in their understanding of English language grammar (Templin and Bradshaw,

2014). The dataset includes student performance in 28 items on 3 skills (S1: morphosyntactic

rules, S2: cohesive rules, and S3:lexical rules). Each item requires either one or two of the three

skills.

Figure 6.11: The estimated DAG and CPTs of the ECPE data set.

Figure 6.11 shows the prerequisite structure discovered with COMMAND. It hypothesizes

that lexical rules is a prerequisite of cohesive rules and morphosyntactic rules; cohesive rules

www.manaraa.com

125

is a necessary skill for learning morphosyntactic rules. The pair-wise prerequisite relationships

totally agree with the findings in (Templin and Bradshaw, 2014) and that by the PARM

method in (Chen et al., 2015). Our model infers a complete DAG, suggesting that there are no

conditional independencies among the three skills. This is an interesting insight that previous

approaches cannot provide. Further, COMMAND also outputs the conditional probabilities

associated with each skill and its direct prerequisites. We clearly see that the probability of

student mastering a skill increases when the student has acquired more prerequisites of the

skill.

6.4.2.2 Math Data Set

We now evaluate COMMAND using data collected from a commercial non-adaptive tutoring

system. The textbook items are classified in chapters, sections, and objectives. We only use

student performance data from tests in Chapter 2 and 3. That is, students are tested on the

items after they have been taught all relevant skills.

Q-matrix and preprocessing We define skills as book sections. We use a Q-matrix that

assigns each exercise to a skill solely as the book section in which the item appears.7 For each

chapter, we process the data to find a subset of items and students that do not have missing

values. That is, the datasets we use in COMMAND have students responding to all of the

items.

After filtering, two data sets, Math-chap2 and Math-chap3, were obtained for Chapter 2

and 3 respectively. In Math-chap2, six skills are included and each skill is tested on three to

eight items, for a total of 30 items. In Math-chap3, seven skills are included and each skill has

three to seven items, for a total of 33 items. Math-chap2 includes student test results for 1720

students, while the Math-chap3 has test results for 1245 students. For simplicity we use binary

variables to encode performance data and skill variables.

Prerequisite Structure Discovery The Bayesian networks generated with the COM-

MAND algorithm are illustrated in Figure 6.12. Our observation is that the topological order

7Here we assume the items are single-skilled despite that they might be multi-skilled.

www.manaraa.com

126

(a) Prerequisite structure learned for

Math-chap2

(b) Prerequisite structure learned for

Math-chap3

Figure 6.12: Prerequisite structures constructed by COMMAND for Math data sets.

of the sections in both structures are fully consistent with the book ordering heuristic. This

shows an agreement between our fully data-driven method and human experts. We also ran

PARM approach to learn pair-wise prerequisite relationships from these data sets. Given

minsup = 0.125, minconf = 0.76 and minprob = 0.9, 2 5→ 2 6, 2 5→ 2 7 and 2 6→ 2 7 are

discovered for Math-chap2, 3 1 → 3 3 and 3 2 → 3 3 are discovered for Math-chap3. These

relationships are small subset of the set of relationships discovered by COMMAND.

Predictive Performance COMMAND outputs a Bayesian network model that can be

used for inference and predictive modeling. For example, given a student’s response to a set

of items, we can infer the student’s knowledge status of a skill. We could use COMMAND to

identify students that may need remediation because they lack some background. We evaluate

the accuracy of the predicted student performance on an item, when we observe the student

response on the other items. More precisely, we compute the posterior probability of a student’s

response to an item Ii given his performance on all other items I−i = I \ {Ii}, by marginalizing

over the set of latent skill variables S:

P (Ii|I−i = i−i) =
∑
S

P (Ii,S|I−i = i−i).

This probability can be computed efficiently using the Junction tree algorithm (Koller

and Friedman, 2009). We then do binary classification based on the posterior probability to

determine if the student is likely to answer correct. We compare the Bayesian network models

www.manaraa.com

127

generated from COMMAND with five baseline predictors:

• A majority classifier which always classifies an instance to the majority class. For ex-

ample, if majority of the students get an item wrong, other students would likely get it

wrong.

• A Bayesian network model in which the skill variables are disconnected. This model

assumes that the skill variables are marginally independent of each other. Most existing

knowledge tracing approaches make this assumption.

• A Bayesian network model in which the skill variables are connected in a chain structure,

i.e., 2-2→2-3→2-4→ This assumes that a section (skill) only depends on the previous

section. In other words, a first-order Markov chain dependency structure.

• A Bayesian network model constructed using the pairwise relationships output from

PARM. That is, we create an edge Si → Sj if PARM says Si is the prerequisite of

Sj .

• A fully connected Bayesian network where skill variables are fully connected with each

other. This model assumes no conditional independence between skill variables and can

encode any joint distribution over the skill variables. However, it has exponential number

of free parameters and thus can easily overfit the data.

The parameters of these baseline Bayesian network predictors are estimated from the data

using parametric EM. The model predictions were evaluated using the Area Under the Curve

(AUC) of the Receiver Operating Characteristic (ROC) curve metric calculated from 10-fold

cross-validation. Results are presented in Figure 6.13. The error bars show the 95% confidence

intervals calculated from the cross-validation. On both Math-chap2 and Math-chap3 data

sets, the COMMAND models outperform the other five models. The fully connected models

are the second best performing models. On Math-chap2, COMMAND model has an AUC of

0.803 ± 0.008 and the fully-connected model has an AUC of 0.791 ± 0.007 (Figure 6.13a). A

paired t-test reveals that the AUC difference of two models are statistically significant with a

p-value of 0.0022. On Math-chap3, COMMAND model has an AUC of 0.775 ± 0.007 and the

www.manaraa.com

128

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

Majority

Disconnected

Chain
PARM

COMMAND

Fully connected

A
U

C

(a) Math-chap2 AUC results

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

Majority

Disconnected

Chain
PARM

COMMAND

Fully connected

A
U

C

(b) Math-chap3 AUC results

Figure 6.13: Ten fold cross-validation results of evaluating the predictions of student performance.

fully-connected model has an AUC of 0.765± 0.008 (Figure 6.13b). The AUC difference of two

models are also statistically significant with a p-value of 0.01. The fully connected models are

outperformed by the much simpler prerequisite models, suggesting overfitting.

6.5 Conclusion and Discussion

Prerequisite graphs have been shown (Botelho et al., 2015; Käser et al., 2014) to improve

student models. However, discovering the prerequisites between skills requires significant effort

from subject matter experts. The main contribution of our work is a novel algorithm that

simultaneously infers a prerequisite graph and a student model from data with less human

intervention.

We extend on prior work in significant ways. We optimize the full structure of skills that

captures the conditional independence between skills, instead of only estimating the pairwise

relationships. Our experiments suggests that this results in better accuracy. Moreover, we argue

that our strategy is easier to use because it does not require manual tuning of parameters. Other

methods (Brunskill, 2010) require the guess and slip probabilities to be provided as input,

or alternatively (Chen et al., 2015), thresholds to determine the existence of a prerequisite

relationship. Determining these values requires experts’ intervention. COMMAND does not

require such tuning.

www.manaraa.com

129

We analyze how missing values, noise and dataset size can affect the performance of COM-

MAND. Further research could explore additional datasets and baselines. A secondary con-

tribution of our work is that we develop a methodology to evaluate prerequisite structures on

real student data. We believe that we are the first to compare prerequisite discovery strategies

by how well they can be used to predict student performance. Therefore, we validate COM-

MAND not only with synthetic data, but with two real-world datasets. Our results suggest that

COMMAND improves on the state of the art because it significantly improves on a recently

published technique.

Learning a prerequisite graph is not merely discovering a Bayesian network— equivalent

Bayesian network structures in fact represent different prerequisite structures. We believe we

are the first to address this problem. We use domain knowledge to refine the prerequisite

models output from the Bayesian network structure learning algorithms using a theoretically

motivated method.

www.manaraa.com

130

CHAPTER 7. SUMMARY, CONTRIBUTIONS AND FUTURE WORK

In this chapter, we summarize the main contributions of this thesis and discuss the potential

future work related to structure discovery in Bayesian networks.

7.1 Summary and Contributions

Summary of Chapter 1

We introduced the syntax and semantics of Bayesian networks and defined the research

problems of Bayesian network structure learning and structure discovery. We then reviewed

related work and briefly discussed their pros and cons. Finally, we provided an overview of this

thesis.

Summary and Contributions of Chapter 2

We studied the problem of learning a Bayesian network structure from the data and pro-

posed a novel heuristic algorithm that takes advantage of the idea of curriculum learning and

learns Bayesian network structures by stages. At each stage a subnet is learned over a se-

lected subset of the random variables. The selected subset grows with stages and eventually

includes all the variables. We proved theoretical advantages of our algorithm and also empiri-

cally showed that it outperformed the state-of-the-art heuristic approach in learning Bayesian

network structures under several different evaluation metrics.

Summary and Contributions of Chapter 3

We developed an algorithm to efficiently enumerate the k-best equivalence classes of Bayesian

networks where Bayesian networks in the same equivalence class are equally expressive in terms

www.manaraa.com

131

of representing probability distributions. Our algorithm is capable of finding much more best

DAGs than the previous algorithm that directly finds the k-best DAGs (Tian et al., 2010).

We demonstrated our algorithm on the task of Bayesian model averaging for computing the

posterior probabilities of edge features. Our approach goes beyond the maximum-a-posteriori

(MAP) model by listing the most likely network structures and their relative likelihood and

therefore has important applications in causal structure discovery.

Summary and Contributions of Chapter 4

We presented a parallel algorithm for exact Bayesian edge learning. Our algorithm computes

the exact posterior probabilities for all possible directed edges with optimal space efficiency and

nearly optimal time efficiency. This is the first practical parallel algorithm for computing the

exact posterior probabilities of structural features in Bayesian networks. We demonstrated its

capability on datasets with up to 33 variables and its scalability on up to 2048 processors. To

our knowledge, 33-variable network is the largest problem solved so far. We demonstrated our

algorithm on a biological data set for discovering the (yeast) pheromone response pathways.

Further, we developed two parallel techniques for computing two variants of well-known zeta

transform. These features or ideas can potentially be extended and applied in developing

parallel algorithms for related problems.

Summary and Contributions of Chapter 5

We developed a novel algorithm to compute the exact posterior probabilities of ancestor

relations in Bayesian networks. Previous Bayesian approach assumes an order-modular prior

over DAGs and performs summation over order space instead of DAG space. As a result,

the computed posteriors would bias towards DAGs consistent with more linear orders and the

Markov equivalence is not respected either. Instead, our algorithm allows the uniform structure

prior and respects the Markov equivalence by directly summing over DAG space. Experimental

comparison showed that the structure prior has non-negligible effect on the computed posteriors.

We also applied our algorithm on a biological data set to discover protein signaling pathways.

Further, we extended our algorithm to compute the exact posterior of any s p t relation,

www.manaraa.com

132

i.e., a directed path from s to t via p.

Summary and Contributions of Chapter 6

We studied the problem of estimating the prerequisite relationships between skills from

student performance data. We introduced Combined student Modeling and prerequisite Dis-

covery (COMMAND), a novel algorithm for jointly inferring a skill prerequisite graph and a

student model. COMMAND learns the prerequisite relations as a Bayesian network that allows

modeling of the full prerequisite structure of skills. Our experiments on simulations and real

student data suggested that COMMAND is more accurate than prior methods for prerequisite

discovery and student modeling.

7.2 Future Work

Some interesting directions for future work include:

• In chapter 2, our algorithm incrementally constructs the Bayesian network structure by

growing a subnet stage by stage. In each stage, the algorithm only learns the subnet over

a selected subset of the variables. An alternative way is to use ideas from the bottom-up

hierarchical clustering (HC). That is, we may cluster variables using HC based on mutual

information and learn a subnet over each cluster. When merging two smaller clusters

into one larger cluster, we learn a new subnet over the newly formed cluster using the

subnets over the two smaller clusters as starting point. In other words, we simultaneously

learn multiple components of the target structure at each time and join these components

to make larger ones. A benefit of this algorithm is that it can be easily parallelized as

learning of each component is independent and this will potentially make it more scalable.

• In chapter 3, kBestEC and kBestDAG are both based on the DP algorithm that finds

an optimal Bayesian networks. Recently, integer linear programming (ILP) has been

used to find the optimal Bayesian network and showed competitive or faster than the

DP algorithm (Jaakkola et al., 2010; Cussens, 2011; Bartlett and Cussens, 2013). In

particular, ILP based algorithm GOBNILP casts the structure learning problem as a

www.manaraa.com

133

linear program. In such setting, each DAG can be encoded as a linear constraint (linear

inequality). Thus, we can run GOBNILP to iteratively find the top k DAGs as follows: in

the first iteration, we simply run GOBNILP to find the best DAG; the second best DAG

can be learned by starting a new ILP program with a the linear constraint encoding the

best DAG added to rule out the best DAG; the k-best DAGs can be found by iteratively

running the IP search k times with appropriate constraints added in each time. That is,

to find the i-th best DAG, an IP search is launched with i − 1 linear constraints added

to rule out the (i − 1)-best DAGs. A more efficient way to find the k-best DAGs is to

consider the equivalence between DAGs. That is, when find a DAG with ILP, we simply

run Algorithm 3.2 to find all its equivalent DAGs. In the next iteration, we encode these

DAGs into their corresponding linear constraints and add these constraints in the new

ILP program to rule out the entire equivalence class (EC). In such way, we can efficiently

find the k-best ECs. Alternatively, if we can directly find a linear representation for each

equivalence class, finding the k-best ECs using GOBNILP will be much more efficient.

Thus, one direction of the future work is to explore this idea.

• In chapter 4, from the experiments, we observed that the memory usage of our ParaREBEL

reached the limit much faster than computing time did. Solving a 33-variable problem

took less than one hour on a typical computing cluster with thousands of processors, but

it required more than two terabytes of memory. Thus, one direction of the future work is

to improve the algorithm such that less space is used. Particularly, there is a possibility

to combine the present parallel algorithm with the method in (Parviainen and Koivisto,

2010) to trade space against time.

• In chapter 6, the first phase of COMMAND algorithm uses Structural EM to learn a

Bayesian network with skills as latent variables. Structural EM interleaves greedy struc-

ture search with the estimation of latent variables and parameters, maintaining a single

best network at each step. It does not provide any theoretical guarantee on the quality of

the networks learned. Recently, Lazic et al. (2013) proposed Structural Expectation Prop-

agation (SEP), an extension of EP that can also infer the structure of Bayesian networks

www.manaraa.com

134

having latent variables and missing data. SEP accounts for uncertainty in structure and

parameter values and returns a variational distribution over network structures rather

than a single network. A MAP network can then be obtained based on the estimated

distribution. Experimental comparison showed that SEP outperformed Structural EM in

learning the DAG structure. Thus, one direction of the future work is to replace Struc-

tural EM with SEP for structure learning in the first phase of COMMAND. Further, in

the second phase of COMMAND to identify a unique DAG from its equivalence class, we

take an ad-hoc strategy to orient all reversible edges, one by one. This strategy is very

sensitive to errors since an error made on one edge can result in propagated errors in next

stages. Thus, another piece of future work is to design a metric that can measure the

global fitness of a DAG to the domain constraint and use this metric to identify a unique

DAG. In this way, learning may be more accurate and even more efficient.

www.manaraa.com

135

APPENDIX A. SUPPLEMENTAL MATERIAL FOR FINDING THE

K-BEST EQUIVALENCE CLASSES FOR MODEL AVERAGING

Section A.1 provides the proofs of theorems and lemmas in chapter 3. Section A.2 gives the

detailed algorithm for checking equivalence of two DAGs used by Algorithm 3.1 in chapter 3.

A.1 Proofs of Theorems

Lemma 3.1. For any decomposable score function that satisfies score equivalence, we have

score(GW) = score(G′W) if GW and G′W are equivalent over node set W ⊆ V .

Proof. We can construct two equivalent DAGs GV and G′V over the total node set V from GW

and G′W respectively. For each v ∈ V \W , we pick arbitrary parent set Pav ⊆ W . Then GV

and G′V can be constructed by GV = GW⊕v∈V \W Pav and G′V = G′W⊕v∈V \W Pav. GV and G′V

are equivalent since they have the same skeleton and same set of v-structures. This is because:

GW and G′W have the same skeleton and the same set of v-structures; adding Pav’s for all

v ∈ V \W only adds directed edges from any node u ∈ W to node v ∈ V \W . This produces

the same skeleton as well as the same set of v-structures. By Definition 3.2 and Definition 3.3,

score(GV) =
∑
v∈W

scorev(Pa
GW
v) +

∑
v∈V \W

scorev(Pav) = score(GW) +
∑

v∈V \W

scorev(Pav),

score(G′V) =
∑
v∈W

scorev(Pa
G′W
v) +

∑
v∈V \W

scorev(Pav)score(G
′
W) +

∑
v∈V \W

scorev(Pav),

score(GV) = score(G′V).

Solving these equations yields score(GW) = score(G′W).

Theorem 3.2. The k DAGs corresponding to the k-best scores output by the best-first search

represent the k-best ECs over W with s as a sink.

www.manaraa.com

136

Proof. We first prove that these k DAGs are mutually nonequivalent. For any GpW,s and GqW,s,

p, q ∈ {1, ..., k}, p 6= q, we have two different cases.

Case 1: GpW,s and GqW,s are constructed from GiW\{s} and GjW\{s} respectively. G1
W\{s},...,

GkW\{s} over W \ {s} are nonequivalent. This implies that any two of them, say, GiW\{s} and

GjW\{s}, are either have different skeletons or have the same skeleton but different v-structures.

Since adding parents Pas for s changes neither the skeleton nor any v-structures in GiW\{s}

and GjW\{s}, G
p
W,s and GqW,s must either have different skeletons or have the same skeleton but

different v-structures. Therefore, GpW,s and GqW,s are not equivalent.

Case 2: GpW,s and GqW,s are constructed from the same GiW\{s} but with different parent sets

for s. Since two different parent sets for s have different nodes, the sets of edges respectively

added to GiW\{s} to construct GpW,s and GqW,s are different. As a result, GpW,s and GqW,s have

different skeletons. Therefore, they are not equivalent.

Now we prove that the output G1
W,s, ..., G

k
W,s are the k-best over W with s as a sink. All we

have to show is that for each equivalence class ECiW\{s}, it is safe to keep just one DAG GiW\{s}

while discarding others. That is, using another member G′iW\{s}, we are unable to construct a

DAG G′W,s = G′iW\{s} ⊕ Pas such that score(G′W,s) > score(GkW,s) and it is nonequivalent to

any of G1
W,s, ..., G

k
W,s. Assume we can construct such G′W,s, then we can construct an equivalent

DAG by GW,s = GiW\{s} ⊕ Pas. By Lemma 3.1, score(GW,s) = score(G′W,s) > score(GkW,s).

Best-first search guarantees that this GW,s is in the list of G1
W,s, ..., G

k
W,s. This contradicts the

assumption that G′W,s is nonequivalent to any of G1
W,s, ..., G

k
W,s.

Thus, Theorem 3.2 holds.

A.2 Algorithms

CheckEquivalence(GW , G
′
W) determines whether two DAGs GW , G

′
W over W are equiva-

lent.

www.manaraa.com

137

Algorithm A.1 CheckEquivalence(GW , G
′
W)

1: function CheckVStructure(v,GW , G′W)
2: for each pair of distinct u,w ∈ PaWv in GW do
3: if u /∈ PaWw and w /∈ PaWu and
4: (u /∈ Pa′W

v or w /∈ Pa′W
v in G′W) then

5: return false
6: end if
7: end for
8: for each pair of distinct u,w ∈ Pa′W

v in G′W do

9: if u /∈ Pa′W
w and w /∈ Pa′W

u and
10: (u /∈ PaWv or w /∈ PaWv in GW) then
11: return false
12: end if
13: end for
14: return true
15: end function
16: /* Check skeleton */
17: for each node v ∈W do
18: for each u ∈ PaWv in GW do
19: if u /∈ Pa′W

v and v /∈ Pa′W
u in G′W then

20: return false
21: end if
22: end for
23: for each u ∈ Pa′W

v in G′W do
24: if u /∈ PaWv and v /∈ PaWu in GW then
25: return false
26: end if
27: end for
28: end for
29: /* Check v-structures */
30: for each node v ∈W do
31: if CheckVStructure((v,GW , G′W))=false then
32: return false
33: end if
34: end for
35: return true

www.manaraa.com

138

APPENDIX B. COMPUTING THE POSTERIORS of s p t

RELATIONS

In this appendix we provide supplementary material for chapter 5. Here we extend our

algorithm to compute the exact posterior of any s p t relation, i.e., a directed path from

s to t via p, in O(n7n−2) time and O(4n−2) space.

B.1 Algorithm

The problem is to evaluate whether there is a directed path from s to t via p. Similarly, we

would like to compute the joint probability P (s p t,D) by

P (s p t,D) =
∑

G:s p t∈G

∏
i∈V

Bi(Pa
G
i). (B.1)

For any T,R, S such that p ∈ T ⊂ R ⊆ S ⊆ V , s ∈ R − T , let Gs,p(S,R, T) denote the set

of all possible DAGs over S such that R are the set of all descendants of s (including s) and T

are the set of all descendants of p (including p) in GS . That is, GS ∈ Gs,p(S,R, T) if and only

if deGS
(s) = R and deGS

(p) = T . We then define

Hs,p(S,R, T) ≡
∑

GS∈Gs,p(S,R,T)

∏
i∈S

Bi(Pa
GS
i). (B.2)

Then we have

Lemma B.1.

P (s p t,D) =
∑

T,R:{p,t}⊆T⊂R⊆V,s∈R−T

Hs,p(V,R, T). (B.3)

Proof. . Let Gs p t = {G : s p t ∈ G}, namely the set of all possible DAGs over

V that contains a s p t. Then we have Gs p t = ∪T,R:{p,t}⊆T⊂R⊆V,s∈R−TGs,p(V,R, T).

www.manaraa.com

139

Further, for any T1 6= T2 or R1 6= R2, we have Gs,p(V,R1, T1)∩ Gs,p(V,R2, T2) = ∅. This means

Gs,p(V,R, T) for all T , R such that p ∈ T ⊂ R ⊆ V , s ∈ R − T form a partition of the set

Gs p t. Thus,

P (s p t,D) =
∑

G∈Gs p t

∏
i∈V

Bi(Pa
G
i) =

∑
T,R:{p,t}⊆T⊂R⊆V

s∈R−T

∑
G∈Gs,p(V,R,T)

∏
i∈V

Bi(Pa
G
i)

=
∑

T,R:{p,t}⊆T⊂R⊆V,s∈R−T

Hs,p(V,R, T).

(B.4)

If we have all Hs,p(S,R, T) computed, it takes
∑n
|R|=1

[(
n−3
|R|−3

)∑|R|−1
|T |=2

(|R|−3
|T |−2

)]
= O(3n−3)

time to compute Equation B.3.

Now we can show that Hs,p(S,R, T) for all T , R, S such that p ∈ T ⊂ R ⊆ S ⊆ V and

s ∈ R − T can be computed recursively. These Hs,p(S,R, T)’s can be divided into two cases:

T = {p} and T 6= {p}.

Figure B.1: Case 1: T = {p}.

Case 1: T = {p}.

In this case, p is a sink in GS (see Figure B.1) and its parent set must include a least one

node in R− {p} to make it a descendant of s. For nodes in S − {p}, we have summation over

Gs(S −{p}, R−{p}), i.e., the set of DAGs over S −{p} s.t. R−{p} are the set of descendants

www.manaraa.com

140

of s in GS−{p}. Then we have

Hs,p(S,R, {p}) = [
∑

Pap⊆S−{p}
Pap∩R−{p}6=∅

Bp(Pap)][
∑

GS−{p}∈Gs(S−{p},R−{p})

∏
i∈S−{p}

Bi(Pa
GS−{p}
i)]

= [
∑

Pap⊆S−{p}

Bp(Pap)−
∑

Pap⊆S−R
Bp(Pap)]Hs(S − {p}, R− {p})

= [Ap(S − {p})−Ap(S −R)]Hs(S − {p}, R− {p})

= [AA(S − {p}, {p})−AA(S −R, {p})]Hs(S − {p}, R− {p}).

(B.5)

Case 2: T 6= {p}.

For any W ⊆ S − {s, p}, let Gs,p(S,R, T,W) denote the set of DAGs in Gs,p(S,R, T) such

that all nodes in W are (must be) sinks.1 Then we define

Fs,p(S,R, T,W) ≡
∑

GS∈Gs,p(S,R,T,W)

∏
i∈S

Bi(Pa
GS
i). (B.6)

Similarly, by weighted inclusion-exclusion principle,

Hs,p(S,R, T) =

|S|−2∑
k=1

(−1)k+1
∑

W⊆S−{s,p},|W |=k

∑
GS∈Gs,p(S,R,T,W)

∏
i∈S

Bi(Pai)

=

|S|−2∑
k=1

(−1)k+1
∑

W⊆S−{s,p},|W |=k

Fs,p(S,R, T,W).

(B.7)

Fs,p(S,R, T,W) and Hs,p(S,R, T) can be computed recursively. There are three sub-cases (see

Figure B.2).

(a) W ∩R = ∅ (b) W ∩R 6= ∅ and W ∩ T = ∅ (c) W ∩ T 6= ∅

Figure B.2: Three sub-cases when computing Fs,p(S,R, T,W).

1Again, W may not include all the sinks in GS . Some nodes in S −W could be sinks.

www.manaraa.com

141

Sub-case 1: W ∩R = ∅.

We can compute the summation for W and S−W separately (see Figure B.2(a)). We have

Fs,p(S,R, T,W) = [
∏
j∈W

∑
Paj⊆(S−R−W)

Bj(Paj)][
∑

GS−W∈Gs,p(S−W,R,T)

∏
i∈S−W

Bi(Pa
GS−W

i)]

=
∏
j∈W

Aj(S −R−W)Hs,p(S −W,R, T) = AA(S −R−W,W)Hs,p(S −W,R−W,T −W)

(because R−W = R and T −W = T in this case).

(B.8)

Sub-case 2: W ∩R 6= ∅ and W ∩ T = ∅.

In this case, nodes in W − R, W ∩ R, and S − W should be handled separately (see

Figure B.2(b)). Nodes in W −R can only select parents from S −R−W . Any node in W ∩R

can select parents from S −W − T . In addition, at least one node from R − T −W must be

included in its parent set to guarantee that it is a descendant of s. For nodes in S −W , we

have summation over Gs,p(S −W,R−W,T). Then we have

Fs,p(S,R, T,W)

= [
∏

j∈W−R

∑
Paj⊆(S−R−W)

Bj(Paj)][
∏

j∈W∩R

∑
Paj⊆(S−W−T)
Paj∩(R−T−W)6=∅

Bj(Paj)][
∑

GS−W∈
Gs,p(S−W,R−W,T)

∏
i∈S−W

Bi(Pa
GS−W

i)]

=
∏

j∈W−R
Aj(S −R−W)

 ∏
j∈W∩R

[Aj(S −W − T)−Aj(S −W −R)]

Hs,p(S −W,R−W,T)

= AA(S −W −R,W −R)

 ∏
j∈W∩R

[Aj(S −W − T)−Aj(S −W −R)]

Hs,p(S −W,R−W,T −W)

(because T −W = ∅ in this case).

(B.9)

Sub-case 3: W ∩ T 6= ∅.

In this case, nodes in W −R, W ∩ (R−T), W ∩T , and S−W should be handled separately

(see Figure B.2(c)). Nodes in W − R can only select parents from S − R −W . Any node in

W ∩ (R−T) can select parents from S−W −T . In addition, at least one node from R−T −W

must be included in its parent set to guarantee that it is a descendant of s. Nodes in W ∩ T

can select parents from S −W and at least one node as its parent from T −W to make it a

www.manaraa.com

142

descendant of p. For nodes in S −W , we have summation over Gs,p(S −W,R −W,T −W).

Then we have

Fs,p(S,R, T,W)

= [
∏

j∈W−R

∑
Paj⊆(S−R−W)

Bj(Paj)][
∏

j∈W∩(R−T)

∑
Paj⊆(S−W−T)
Paj∩(R−T−W) 6=∅

Bj(Paj)]

[
∏

j∈W∩T

∑
Paj⊆(S−W)
Paj∩(T−W)6=∅

Bj(Paj)][
∑

GS−W∈
Gs,p(S−W,R−W,T−W)

∏
i∈S−W

Bi(Pa
GS−W

i)]

=
∏

j∈W−R
Aj(S −R−W)

 ∏
j∈W∩(R−T)

[Aj(S −W − T)−Aj(S −W −R)]

 ∏
j∈W∩T

[Aj(S −W)−Aj(S −W − T)]

Hs,p(S −W,R−W,T −W)

= AA(S −W −R,W −R)

 ∏
j∈W∩(R−T)

[Aj(S −W − T)−Aj(S −W −R)]

 ∏
j∈W∩T

[Aj(S −W)−Aj(S −W − T)]

Hs,p(S −W,R−W,T −W).

(B.10)

For ease of exposition, for all S,R, T,W such that {p} ⊂ T ⊂ R ⊆ S ⊆ V , s ∈ R − T and

W ⊆ S − {s, p}, define function As,p(S,R, T,W) as follows:

If W ∩R = ∅,

As,p(S,R, T,W) ≡ AA(S −R−W,W);

If W ∩R 6= ∅ and W ∩ T = ∅,

As,p(S,R, T,W) ≡ AA(S −W −R,W −R)

 ∏
j∈W∩R

[Aj(S −W − T)−Aj(S −W −R)]

;

If W ∩ T 6= ∅,

As,p(S,R, T,W) ≡ AA(S −W −R,W −R)

 ∏
j∈W∩(R−T)

[Aj(S −W − T)−Aj(S −W −R)]

 ∏
j∈W∩T

[Aj(S −W)−Aj(S −W − T)]

.
(B.11)

www.manaraa.com

143

Now Fs,p(S,R, T,W) can be neatly written as

Fs,p(S,R, T,W) = As,p(S,R, T,W)Hs,p(S −W,R−W,T −W). (B.12)

Then we have a recursive formula for computing Hs,p(S,R, T),

Hs,p(S,R, T) =

|S|−2∑
k=1

(−1)k+1
∑

W⊆S−{s,p},|W |=k

As,p(S,R, T,W)Hs,p(S −W,R−W,T −W).

(B.13)

And finally, we arrive the following recursive scheme for computing Hs,p(S,R, T) for all T ,

R, S such that p ∈ T ⊂ R ⊆ S ⊆ V and s ∈ R− T .

Theorem B.1.

For all {s, p} ⊆ R ⊆ S ⊆ V ,

Hs,p(S,R, {p}) = [AA(S − {p}, {p})−AA(S −R, {p})]Hs(S − {p}, R− {p})

For all T,R, S such that {p} ⊂ T ⊂ R ⊆ V and s ∈ R− T ,

Hs,p(S,R, T) =

|S|−2∑
k=1

(−1)k+1
∑

W⊆S−{s,p},|W |=k

As,p(S,R, T,W)Hs,p(S −W,R−W,T −W)

Note that all Hs(S − {p}, R− {p})’s can be computed recursively using Theorem 5.1.

B.2 Time and Space Complexity

Computing Hs,p(S,R, {p}) and Hs,p(S,R, T) dominates the total computation time. Given

all Hs(S − {p}, R − {p})’s pre-computed, Hs,p(S,R, {p}) for all {s, p} ⊆ R ⊆ S ⊆ V can be

computed in
∑n
|S|=2

(
n−2
|S|−2

)∑|S|
|R|=2

(|S|−2
|R|−2

)
= O(3n−2) time. All other Hs,p(S,R, T)’s can be

computed in

www.manaraa.com

144

n∑
|S|=3

(
n− 2

|S| − 2

)
|S|∑
|R|=3

(
|S| − 2

|R| − 2

)|R|−1∑
|T |=2

(
|R| − 2

|T | − 1

)
|S| · 2|S|−2


=

n∑
|S|=3

(
n− 2

|S| − 2

)
|S|∑
|R|=3

(
|S| − 2

|R| − 2

)
|S| · 2|S|+|R|−4

 =
n∑
|S|=3

(
n− 2

|S| − 2

)[
|S| · 2|S|−2 · 3|S|−2

]

=
n∑
|S|=3

(
n− 2

|S| − 2

)[
|S| · 6|S|−2

]
< n7n−2.

(B.14)

Thus, the total computation time isO(n7n−2). The space complexity is dominated byHs,p(S,R, T),

which is

n∑
|S|=2

(
n− 2

|S| − 2

)
|S|∑
|R|=2

(
|S| − 2

|R| − 2

)|R|−1∑
|T |=1

(
|R| − 2

|T | − 1

)
=

n∑
|S|=2

(
n− 2

|S| − 2

)
|S|∑
|R|=2

(
|S| − 2

|R| − 2

)
2|R|−2

 =
n∑
|S|=3

(
n− 2

|S| − 2

)
3|S|−2 = 4n−2.

(B.15)

Thus, the total space requirement is O(4n−2 + 3n). Thus, we have the following theorem.

Theorem B.2. The posterior probability of any s p t relation can be computed in

O(n7n−2) time and O(4n−2 + 3n) space.

www.manaraa.com

145

BIBLIOGRAPHY

Achterberg, T., Berthold, T., Koch, T., and Wolter, K. (2008). Constraint integer program-

ming: A new approach to integrate cp and mip. In Integration of AI and OR techniques in

constraint programming for combinatorial optimization problems, pages 6–20. Springer.

Acid, S. and de Campos, L. M. (2001). A hybrid methodology for learning belief networks:

Benedict. International Journal of Approximate Reasoning, 27(3):235–262.

Alcalá, J., Fernández, A., Luengo, J., Derrac, J., Garćıa, S., Sánchez, L., and Herrera, F. Keel

data-mining software tool: Data set repository, integration of algorithms and experimental

analysis framework.

Aliferis, C. F., Tsamardinos, I., Statnikov, A. R., and Brown, L. E. (2003). Causal explorer: A

causal probabilistic network learning toolkit for biomedical discovery. In METMBS, volume 3,

pages 371–376.

Allgower, E. L. and Georg, K. (1990). Numerical continuation methods, volume 13. Springer-

Verlag Berlin.

Ananth, G., Anshul, G., George, K., and Vipin, K. (2003). Introduction to Parallel computing.

Boston, MA: Addison-Wesley.

Bartlett, M. and Cussens, J. (2013). Advances in Bayesian network learning using integer

programming. In Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence

(UAI-13), pages 182–191.

Bengio, Y., Louradour, J., Collobert, R., and Weston, J. (2009). Curriculum learning. In

Proceedings of the 26th annual international conference on machine learning, pages 41–48.

ACM.

www.manaraa.com

146

Björklund, A., Husfeldt, T., Kaski, P., and Koivisto, M. (2007). Fourier meets möbius: fast

subset convolution. In Proceedings of the thirty-ninth annual ACM symposium on Theory of

computing, pages 67–74. ACM.

Björklund, A., Husfeldt, T., Kaski, P., and Koivisto, M. (2010). Trimmed moebius inversion

and graphs of bounded degree. Theory of Computing Systems, 47(3):637–654.

Botelho, A., Wan, H., and Heffernan, N. (2015). The prediction of student first response using

prerequisite skills. In Learning At Scale, pages 39–45. ACM.

Bromberg, F. and Margaritis, D. (2009). Improving the reliability of causal discovery from small

data sets using argumentation. In Journal of Machine Learning Research, pages 301–340.

Brunskill, E. (2010). Estimating prerequisite structure from noisy data. In Educational Data

Mining 2011.

Buntine, W. (1991). Theory refinement on Bayesian networks. In Proceedings of the Sev-

enth conference on Uncertainty in Artificial Intelligence, pages 52–60. Morgan Kaufmann

Publishers Inc.

Castelo, R. and Kocka, T. (2003). On inclusion-driven learning of Bayesian networks. The

Journal of Machine Learning Research, 4:527–574.

Chen, Y., Wuillemin, P.-H., and Labat, J.-M. (2015). Discovering Prerequisite Structure of

Skills through Probabilistic Association Rules Mining. In Educational Data Mining, pages

117–124.

Chickering, D. M. (1995). A transformational characterization of equivalent Bayesian network

structures. In Proceedings of the Eleventh conference on Uncertainty in artificial intelligence,

pages 87–98.

Chickering, D. M. (1996). Learning Bayesian networks is NP-complete. In Learning from data,

pages 121–130. Springer.

Chickering, D. M. (2002a). Learning equivalence classes of Bayesian network structures. Journal

of Machine Learning Research, 2:445–498.

www.manaraa.com

147

Chickering, D. M. (2002b). Optimal structure identification with greedy search. Journal of

Machine Learning Research, 3:507–554.

Cooper, G. F. and Herskovits, E. (1992). A Bayesian method for the induction of probabilistic

networks from data. Machine learning, 9(4):309–347.

Csisz, I. et al. (1967). Information-type measures of difference of probability distributions and

indirect observations. Studia Sci. Math. Hungar., 2:299–318.

Cussens, J. (2011). Bayesian network learning with cutting planes. In Proceedings of the 27th

Conference on Uncertainty in Artificial Intelligence (UAI-11):, pages 153–160.

Dally, W. J. and Towles, B. P. (2004). Principles and practices of interconnection networks.

Access Online via Elsevier.

Desmarais, M. C., Meshkinfam, P., and Gagnon, M. (2006). Learned student models with item

to item knowledge structures. User Modeling and User-Adapted Interaction, 16(5):403–434.

Eaton, D. and Murphy, K. (2007). Bayesian structure learning using dynamic programming

and MCMC. In Proceedings of the 23th Conference on Uncertainty in Artificial Intelligence.

Ellis, B. and Wong, W. H. (2008). Learning causal Bayesian network structures from experi-

mental data. Journal of the American Statistical Association, 103(482).

Elman, J. L. (1993). Learning and development in neural networks: The importance of starting

small. Cognition, 48:71–99.

Friedman, N. (1997). Learning belief networks in the presence of missing values and hidden

variables. In ICML, volume 97, pages 125–133.

Friedman, N. and Koller, D. (2003). Being Bayesian about network structure. a Bayesian

approach to structure discovery in Bayesian networks. Machine learning, 50(1-2):95–125.

Gillispie, S. B. and Perlman, M. D. (2001). Enumerating markov equivalence classes of acyclic

digraph dels. In Proceedings of the Seventeenth conference on Uncertainty in artificial intel-

ligence, pages 171–177.

www.manaraa.com

148

González-Brenes, J. P. (2015). Modeling Skill Acquisition Over Time with Sequence and Topic

Modeling. In International Conference on Artificial Intelligence and Statistics, pages 296–

305.

Grzegorczyk, M. and Husmeier, D. (2008). Improving the structure MCMC sampler for

Bayesian networks by introducing a new edge reversal move. Machine Learning, 71(2-3):265–

305.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H. (2009). The

weka data mining software: an update. ACM SIGKDD explorations newsletter, 11(1):10–18.

Hartemink, A. J. (2001). Principled computational methods for the validation and discovery of

genetic regulatory networks. PhD thesis, Massachusetts Institute of Technology.

Hartemink, A. J., Gifford, D. K., Jaakkola, T. S., and Young, R. A. (2002). Combining location

and expression data for principled discovery of genetic regulatory network models. In Pacific

symposium on biocomputing, volume 7, pages 437–449.

Heckerman, D. and Chickering, D. M. (1995). Learning Bayesian networks: The combination

of knowledge and statistical data. In Machine Learning, pages 20–197.

Heckerman, D., Geiger, D., and Chickering, D. M. (1995). Learning Bayesian networks: The

combination of knowledge and statistical data. Machine learning, 20(3):197–243.

Heckerman, D., Meek, C., and Cooper, G. (1997). A Bayesian approach to causal discovery.

Technical report, MSR-TR-97-05, Microsoft Research.

Irani, K. B. (1993). Multi-interval discretization of continuous-valued attributes for classifica-

tion learning.

Jaakkola, T., Sontag, D., Globerson, A., and Meila, M. (2010). Learning Bayesian network

structure using lp relaxations. In International Conference on Artificial Intelligence and

Statistics, pages 358–365.

Jiang, L., Meng, D., Zhao, Q., Shan, S., and Hauptmann, A. G. (2015). Self-paced curriculum

learning. In Twenty-Ninth AAAI Conference on Artificial Intelligence.

www.manaraa.com

149

Käser, T., Klingler, S., Schwing, A. G., and Gross, M. (2014). Beyond knowledge tracing:

Modeling skill topologies with Bayesian networks. In Intelligent Tutoring Systems, pages

188–198. Springer.

Kennes, R. (1992). Computational aspects of the mobius transformation of graphs. Systems,

Man and Cybernetics, IEEE Transactions on, 22(2):201–223.

Koivisto, M. (2006a). Advances in exact Bayesian structure discovery in Bayesian networks.

In Proceedings of the 22nd Conference in Uncertainty in Artificial Intelligence.

Koivisto, M. (2006b). An o*(2ˆ n) algorithm for graph coloring and other partitioning problems

via inclusion–exclusion. In Foundations of Computer Science, 2006. FOCS’06. 47th Annual

IEEE Symposium on, pages 583–590. IEEE.

Koivisto, M. and Sood, K. (2004). Exact Bayesian structure discovery in Bayesian networks.

The Journal of Machine Learning Research, 5:549–573.

Koller, D. and Friedman, N. (2009). Probabilistic graphical models: principles and techniques.

MIT press.

Kumar, M. P., Packer, B., and Koller, D. (2010). Self-paced learning for latent variable models.

In Advances in Neural Information Processing Systems 23.

Lazic, N., Bishop, C., and Winn, J. (2013). Structural expectation propagation (sep): Bayesian

structure learning for networks with latent variables. In Proceedings of the Sixteenth Inter-

national Conference on Artificial Intelligence and Statistics, pages 379–387.

Li, J. and Wang, Z. J. (2009). Controlling the false discovery rate of the association/causality

structure learned with the PC algorithm. The Journal of Machine Learning Research, 10:475–

514.

Loh, P. K., Hsu, W.-J., and Pan, Y. (2005). The exchanged hypercube. Parallel and Distributed

Systems, IEEE Transactions on, 16(9):866–874.

www.manaraa.com

150

Madigan, D., Andersson, S., Perlman, M., and Volinsky, C. (1996). Bayesian model averaging

and model selection for markov equivalence classes of acyclic digraphs. In Communications

in Statistics: Theory and Methods, pages 2493–2519.

Madigan, D. and Raftery, A. E. (1994). Model selection and accounting for model uncertainty

in graphical models using occam’s window. Journal of the American Statistical Association,

89(428):1535–1546.

Madigan, D., York, J., and Allard, D. (1995). Bayesian graphical models for discrete data.

International Statistical Review/Revue Internationale de Statistique, pages 215–232.

Malone, B., Järvisalo, M., and Myllymäki, P. (2015). Impact of learning strategies on the

quality of Bayesian networks: An empirical evaluation. In Proceedings of the 31st Conference

on Uncertainty in Artificial Intelligence (UAI 2015).

Malone, B. and Yuan, C. (2012). A parallel, anytime, bounded error algorithm for exact

Bayesian network structure learning. In Proceedings of the Sixth European Workshop on

Probabilistic Graphical Models (PGM-12).

Malone, B. and Yuan, C. (2013). Evaluating anytime algorithms for learning optimal Bayesian

networks. In Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence

(UAI-13).

Malone, B. M., Yuan, C., and Hansen, E. A. (2011). Memory-efficient dynamic programming

for learning optimal Bayesian networks. In AAAI.

Margaritis, D. and Thrun, S. (2000). Bayesian network induction via local neighborhoods. In

Solla, S. A., Leen, T., and Müller, K.-R., editors, Advances in Neural Information Processing

Systems 12, pages 505–511. MIT Press.

Meek, C. (1995). Strong completeness and faithfulness in Bayesian networks. In Proceedings

of the Eleventh conference on Uncertainty in artificial intelligence, pages 411–418. Morgan

Kaufmann Publishers Inc.

www.manaraa.com

151

Mislevy, R. J., Almond, R. G., Yan, D., and Steinberg, L. S. (1999). Bayes nets in educational

assessment: Where the numbers come from. In Uncertainty in artificial intelligence, pages

437–446.

Nederlof, J. (2009). Fast polynomial-space algorithms using möbius inversion: Improving on

steiner tree and related problems. In Automata, Languages and Programming, pages 713–725.

Springer.

Niinimäki, T. and Koivisto, M. (2013). Annealed importance sampling for structure learning in

Bayesian networks. In 23rd International Joint Conference on Artificial Intelligence (IJCAI-

13).

Niinimäki, T. M., Parviainen, P., Koivisto, M., et al. (2011). Partial order MCMC for structure

discovery in Bayesian networks. In Proceedings of the Twenty-Seventh Conference Conference

on Uncertainty in Artificial Intelligence (UAI-11).

Nikolova, O., Zola, J., and Aluru, S. (2009). A parallel algorithm for exact Bayesian network

inference. In High Performance Computing (HiPC), 2009 International Conference on, pages

342–349. IEEE.

Nikolova, O., Zola, J., and Aluru, S. (2013). Parallel globally optimal structure learning of

Bayesian networks. Journal of Parallel and Distributed Computing.

Ott, S., Imoto, S., and Miyano, S. (2004). Finding optimal models for small gene networks. In

Pacific symposium on biocomputing, volume 9, pages 557–567.

Parviainen, P. and Koivisto, M. (2009). Exact structure discovery in Bayesian networks with less

space. In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence

(UAI-09), pages 436–443.

Parviainen, P. and Koivisto, M. (2010). Bayesian structure discovery in Bayesian networks

with less space. In International Conference on Artificial Intelligence and Statistics, pages

589–596.

www.manaraa.com

152

Parviainen, P. and Koivisto, M. (2011). Ancestor relations in the presence of unobserved

variables. In Machine Learning and Knowledge Discovery in Databases, pages 581–596.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: networks of plausible inference.

Morgan Kaufmann.

Pearl, J. (2000). Causality: models, reasoning and inference, volume 29. Cambridge Univ

Press.

Pellet, J.-P. and Elisseeff, A. (2008). Using markov blankets for causal structure learning. The

Journal of Machine Learning Research, 9:1295–1342.

Rota, G.-C. (1964). On the foundations of combinatorial theory i. theory of möbius functions.

Probability theory and related fields, 2(4):340–368.

Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D. A., and Nolan, G. P. (2005). Causal protein-

signaling networks derived from multiparameter single-cell data. Science, 308(5721):523–529.

Scheines, R., Silver, E., and Goldin, I. (2014). Discovering prerequisite relationships among

knowledge components. In Educational Data Mining 2014.

Silander, T. and Myllymäki, P. (2006). A simple approach for finding the globally optimal

Bayesian network structure. In Proceedings of the 22th Conference on Uncertainty in Artifi-

cial Intelligence, pages 445–452.

Singh, A. P. and Moore, A. W. (2005). Finding optimal Bayesian networks by dynamic pro-

gramming. Technical report, CMU-CALD-05-106, Carnegie Mellon University.

Spirtes, P., Glymour, C., and Scheines, R. (2000). Causation, prediction, and search, volume 81.

The MIT Press.

Spirtes, P., Glymour, C., and Scheines, R. (2001). Causation, prediction, and search. MIT

Press.

Spitkovsky, V. I., Alshawi, H., and Jurafsky, D. (2010). From baby steps to leapfrog: How “less

is more” in unsupervised dependency parsing. In NAACL.

www.manaraa.com

153

Tamada, Y., Imoto, S., and Miyano, S. (2011). Parallel algorithm for learning optimal Bayesian

network structure. Journal of Machine Learning Research, 12:2437–2459.

Templin, J. and Bradshaw, L. (2014). Hierarchical diagnostic classification models: A family

of models for estimating and testing attribute hierarchies. Psychometrika, 79(2):317–339.

Tian, J. and He, R. (2009). Computing posterior probabilities of structural features in Bayesian

networks. In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intel-

ligence, pages 538–547.

Tian, J., He, R., and Ram, L. (2010). Bayesian model averaging using the k-best Bayesian net-

work structures. In Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial

Intelligence.

Tian, J. and Pearl, J. (2001). Causal discovery from changes. In Proceedings of the Seven-

teenth conference on Uncertainty in artificial intelligence, pages 512–521. Morgan Kaufmann

Publishers Inc.

Tsamardinos, I., Aliferis, C. F., and Statnikov, A. (2003). Time and sample efficient discovery

of markov blankets and direct causal relations. In Proceedings of the ninth ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 673–678. ACM.

Tsamardinos, I., Brown, L. E., and Aliferis, C. F. (2006). The max-min hill-climbing Bayesian

network structure learning algorithm. Machine learning, 65(1):31–78.

Tu, K. and Honavar, V. (2011). On the utility of curricula in unsupervised learning of probabilis-

tic grammars. In IJCAI Proceedings-International Joint Conference on Artificial Intelligence,

volume 22, page 1523.

VanLehn, K. (1988). Student modeling. Foundations of intelligent tutoring systems, 55:78.

Verma, T. and Pearl, J. (1990). Equivalence and synthesis of causal models. In Proceedings of

the Sixth Annual Conference on Uncertainty in Artificial Intelligence, pages 255–270.

Vuong, A., Nixon, T., and Towle, B. (2010). A method for finding prerequisites within a

curriculum. In Educational Data Mining 2011.

www.manaraa.com

154

Yuan, C. and Malone, B. (2012). An improved admissible heuristic for learning optimal Bayesian

networks. In Proceedings of the 28th Conference on Uncertainty in Artificial Intelligence

(UAI-12).

Yuan, C., Malone, B., and Wu, X. (2011). Learning optimal Bayesian networks using a* search.

In Proceedings of the Twenty-Second international joint conference on Artificial Intelligence,

pages 2186–2191.

	2016
	Structure Discovery in Bayesian Networks: Algorithms and Applications
	Yetian Chen
	Recommended Citation

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	ABSTRACT
	1. INTRODUCTION
	1.1 Preliminaries and Problem Definition
	1.1.1 Bayesian Networks
	1.1.2 Structure Learning of Bayesian Networks
	1.1.3 Structure Discovery in Bayesian Networks

	1.2 Related Work
	1.2.1 Bayesian Network Structure Learning
	1.2.2 Structure Discovery in Bayesian Networks
	1.2.3 Scaling Up Bayesian Network Structure Learning
	1.2.4 Parallel Algorithms for Structure Learning and Discovery

	1.3 Thesis Overview

	2. CURRICULUM LEARNING OF BAYESIAN NETWORK STRUCTURES
	2.1 Introduction
	2.2 Curriculum Learning
	2.3 Curriculum Learning of Bayesian Network Structures
	2.3.1 Scoring Function
	2.3.2 Curriculum
	2.3.3 Algorithm

	2.4 Theoretical Analysis
	2.4.1 Analysis Based on Distance between Structures
	2.4.2 Analysis Based on Distance between Distributions

	2.5 Experiments
	2.5.1 Experiments on Bayesian Network Reconstruction
	2.5.1.1 Experimental Setup
	2.5.1.2 Evaluation Metrics
	2.5.1.3 Results
	2.5.1.4 Analysis of Step Size
	2.5.1.5 Theory Verification

	2.5.2 Experiments on Classification
	2.5.2.1 Experimental Setup
	2.5.2.2 Results

	2.6 Discussion
	2.7 Conclusion

	3. FINDING THE K-BEST EQUIVALENCE CLASSES FOR MODEL AVERAGING
	3.1 Preliminaries
	3.2 Finding the k-best Equivalence Classes of Bayesian Networks
	3.2.1 Algorithm
	3.2.2 Characterization of Time and Space Complexity

	3.3 Bayesian Model Averaging Using the k-best Equivalence Classes
	3.4 Experiments
	3.4.1 kBestEC v.s. kBestDAG
	3.4.2 Structure Discovery

	3.5 Discussion
	3.6 Conclusion

	4. PARALLEL EXACT BAYESIAN EDGE LEARNING
	4.1 Introduction
	4.2 Exact Bayesian Structure Discovery in Bayesian Networks
	4.2.1 Computing Posteriors of Structural Features
	4.2.2 Computing Posterior Probabilities for All Edges

	4.3 Parallel Algorithm
	4.3.1 n-D Hypercube Algorithm
	4.3.1.1 Computing F(S) and R(S)
	4.3.1.2 Parallel Fast Zeta Transforms
	4.3.1.3 Computing P(uv|D)

	4.3.2 k-D Hypercube Algorithm
	4.3.2.1 Parallel Fast Zeta Transforms on k-D hypercube
	4.3.2.2 Computing F(S) and R(S) on k-D Hypercube
	4.3.2.3 Overall Algorithm: ParaREBEL
	4.3.2.4 Time and Space Complexity

	4.4 Experiments
	4.4.1 Implementation and Computing Environment
	4.4.2 Running Time and Memory Usage
	4.4.3 Knowledge Discovery

	4.5 Discussion and Conclusion

	5. EXACT BAYESIAN LEARNING OF ANCESTOR RELATIONS
	5.1 Introduction
	5.2 Preliminaries
	5.3 Previous Approaches
	5.4 Bayesian Learning of Ancestor Relations
	5.4.1 Algorithm
	5.4.2 Efficient Computation of As(S,T,W)
	5.4.3 Overall Algorithm to Compute P(st|D)
	5.4.4 Time and Space Complexity
	5.4.5 Exact Bayesian Learning of spt Relations

	5.5 Experiments
	5.5.1 Running Times
	5.5.2 Comparison of Posteriors
	5.5.3 Knowledge Discovery

	5.6 Conclusion

	6. JOINT DISCOVERY OF SKILL PREREQUISITE GRAPHS AND STUDENT MODELS
	6.1 Introduction
	6.2 Relation to Prior Work
	6.3 The COMMAND Algorithm
	6.3.1 Initial Bayesian Network
	6.3.2 Structural EM
	6.3.3 Discriminate Between Equivalent Bayesian Networks
	6.3.3.1 Domain Knowledge
	6.3.3.2 Theoretical Justification of Heuristic
	6.3.3.3 Orient All Reversible Edges

	6.4 Evaluation
	6.4.1 Simulated Data
	6.4.1.1 Single-skill vs Multi-skill Items
	6.4.1.2 Sensitivity to Noise
	6.4.1.3 Sensitivity to Missing Values
	6.4.1.4 Comparison With Prior Work

	6.4.2 Real Student Performance Data
	6.4.2.1 English Data Set
	6.4.2.2 Math Data Set

	6.5 Conclusion and Discussion

	7. SUMMARY, CONTRIBUTIONS AND FUTURE WORK
	7.1 Summary and Contributions
	7.2 Future Work

	A. SUPPLEMENTAL MATERIAL FOR FINDING THE K-BEST EQUIVALENCE CLASSES FOR MODEL AVERAGING
	A.1 Proofs of Theorems
	A.2 Algorithms

	B. COMPUTING THE POSTERIORS of spt RELATIONS
	B.1 Algorithm
	B.2 Time and Space Complexity

	BIBLIOGRAPHY

